Verifying Probabilistic Programs using the HOL Theorem Prover

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Contents

- Introduction

- Formalizing Probability
- Modelling Probabilistic Programs
- Example Verifications
- Conclusion

Introduction

- Quicksort Algorithm (Hoare, 1962):

```
fun quicksort elements =
    if length elements <= 1 then elements
    else
    let
        val pivot = choose_pivot elements
        val (left, right) = partition pivot elements
        in
            quicksort left @ [pivot] @ quicksort right
        end;
```

- Usually $O(n \log n)$ comparisons, unless choice of pivot interacts badly with data.

Introduction

- Example of bad behaviour when pivot is first element:

```
input: [5, 4, 3, 2, 1]
pivot 5: [4, 3, 2, 1]--5--[]
pivot 4: [3, 2, 1]--4--[]
pivot 3: [2, 1]--3--[]
pivot 2: [1]--2--[]
output: [1, 2, 3, 4, 5]
```

- Lists in reverse order take $O\left(n^{2}\right)$ comparisons.
- So do lists that are in the right order!

Introduction

- Solution: Introduce randomization into the algorithm itself.
- Pick pivots uniformly at random from the list of elements.
- Every list has exactly the same performance profile:
- Expected number of comparisons is $O(n \log n)$.
- Small class $C \subset S_{n}$ of lists with guaranteed bad performance has been replaced with a small probability $|C| / n$! of bad performance on any input.

Introduction

- Broken procedure for choosing a pivot:

```
fun choose_pivot elements =
    if length elements = 1 orelse coin_flip ()
    then hd elements
    else choose_pivot (tl elements);
```

- Not a uniform distribution when length of elements >2.
- Actually reinstates a bad class of input lists taking $O\left(n^{2}\right)$ (expected) comparisons.
- Would like to verify probabilistic programs in a theorem prover.

Motivation

Copyright 92001 United Feature Syndicate, Inc.

Contents

- Introduction
- Formalizing Probability
- Modelling Probabilistic Programs
- Example Verifications
- Conclusion

The HOL Theorem Prover

- Developed by Mike Gordon's Hardware Verification Group in Cambridge, first release was HOL88.
- Latest release in mid-2002 called HOL4, developed jointly by Cambridge and Utah.
- Implements classical Higher-Order Logic with Hindley-Milner polymorphism.
- Sprung from the Edinburgh LCF project, so has a small logical kernel to ensure soundness.
- Links to external proof tools, either as oracles (e.g., SAT solvers) or by translating their proofs (e.g., Gandalf).
- Comes with a large library of theorems contributed by many users over the years, including theories of lists, real analysis, groups etc.

Verification in HOL

To verify a probabilistic program in HOL:

- Must be able to formalize its probabilistic specification;

$$
\mathcal{E}: \mathcal{P}\left(\mathcal{P}\left(\mathbb{B}^{\infty}\right)\right), \quad \mathbb{P}: \mathcal{E} \rightarrow \mathbb{R}
$$

- and model the probabilistic program in the logic;

$$
\text { prob_program : } \mathbb{N} \rightarrow \mathbb{B}^{\infty} \rightarrow\{\text { success, failure }\} \times \mathbb{B}^{\infty}
$$

- then finally prove that the program satisfies its specification.

$$
\vdash \forall n . \mathbb{P}\{s \mid \text { fst }(\text { prob_program } n s)=\text { failure }\} \leq 2^{-n}
$$

Formalizing Probability

- Need to construct a probability space of Bernoulli($\left(\frac{1}{2}\right)$ sequences, to give meaning to specifications like

$$
\mathbb{P}\{s \mid \text { fst (prob_program } n s)=\text { failure }\}
$$

- To ensure soundness, would like it to be a purely definitional extension of HOL (no axioms).
- Use measure theory, and end up with a set \mathcal{E} of events and a probability function \mathbb{P} :

$$
\begin{aligned}
\mathcal{E} & =\left\{S \subset \mathbb{B}^{\infty} \mid S \text { is a measurable set }\right\} \\
\mathbb{P}(S) & =\text { the probability measure of } S \text { (for } S \in \mathcal{E} \text {) }
\end{aligned}
$$

Formalizing Probability

- Formalized some general measure theory in HOL, including Carathéodory's extension theorem.
- Next defined the measure of prefix sets (or cylinders):

$$
\forall l . \mu\left\{s_{0} s_{1} s_{2} \cdots \mid\left[s_{0}, \ldots, s_{n-1}\right]=l\right\}=2^{-(\text {length } l)}
$$

- Finally extended this measure to a σ-algebra:

$$
\begin{aligned}
& \mathcal{E}=\sigma(\text { prefix sets }) \\
& \mathbb{P}=\text { Carathéodory extension of } \mu \text { to } \mathcal{E}
\end{aligned}
$$

- Similar to the definition of Lebesgue measure.

Contents

- Introduction
- Formalizing Probability
- Modelling Probabilistic Programs
- Example Verifications
- Conclusion

Modelling Probabilistic Programs

- Given a probabilistic 'function':

$$
\hat{f}: \alpha \rightarrow \beta
$$

- Model \hat{f} with a higher-order logic function

$$
f: \alpha \rightarrow \mathbb{B}^{\infty} \rightarrow \beta \times \mathbb{B}^{\infty}
$$

that passes around 'an infinite sequence of coin-flips.'

- The probability that $\hat{f}(a)$ meets a specification $B: \beta \rightarrow \mathbb{B}$ can then be formally defined as

$$
\mathbb{P}\{s \mid B(\text { fst }(f a s))\}
$$

Modelling Probabilistic Programs

- Can use state-transformer monadic notation to express HOL models of probabilistic programs:

$$
\begin{aligned}
\text { unit } a & =\lambda s .(a, s) \\
\text { bind } f g & =\lambda s . \text { let }\left(x, s^{\prime}\right) \leftarrow f(s) \text { in } g x s^{\prime} \\
\text { coin_flip } f g & =\lambda s . \text { (if shd } s \text { then } f \text { else } g, \text { stl } s)
\end{aligned}
$$

- For example, if dice is a program that generates a dice throw from a sequence of coin flips, then

$$
\text { two_dice }=\operatorname{bind} \text { dice }(\lambda x . \text { bind dice }(\lambda y . \text { unit }(x+y)))
$$

generates the sum of two dice.

Example: The Binomial $\left(n, \frac{1}{2}\right)$ Distribution

- Definition of a sampling algorithm for the $\operatorname{Binomial}\left(n, \frac{1}{2}\right)$ distribution:

$$
\begin{array}{ll}
\vdash & \text { bit }=\text { coin_flip }(\text { unit } 1)(\text { unit } 0) \\
\vdash & \text { binomial } 0=\text { unit } 0 \wedge \\
& \forall n . \\
\quad \text { binomial }(\text { suc } n)= \\
\quad \text { bind bit }(\lambda x . \text { bind }(\text { binomial } n)(\lambda y . \text { unit }(x+y)))
\end{array}
$$

- Correctness theorem:

$$
\vdash \forall n, r . \mathbb{P}\{s \mid \text { fst }(\text { binomial } n s)=r\}=\binom{n}{r}\left(\frac{1}{2}\right)^{n}
$$

Probabilistic Termination

- The $\operatorname{Binomial}\left(n, \frac{1}{2}\right)$ sampling algorithm is guaranteed to terminate within n coin-flips.
- The following algorithm generates dice throws from coin-flips (Knuth and Yao, 1976):

- The backward loops introduce the possibility of looping forever.
- But the probability of this happening is 0 .
- Probabilistic termination: the program terminates with probability 1.

Probabilistic Termination

- Probabilistic termination is more expressive than guaranteed termination.
- No coin-flip algorithm that is guaranteed to terminate can sample from the following distributions:
- Uniform(3): choosing one of $0,1,2$ each with probability $\frac{1}{3}$.
- Geometric $\left(\frac{1}{2}\right)$: choosing $n \in \mathbb{N}$ with probability $\left(\frac{1}{2}\right)^{n+1}$.

The index of the first head in a sequence of coin-flips.

- We model probabilistic termination in HOL using a probabilistic while loop:
$\vdash \quad \forall c, b, a$.
while $c b a=$ if $c(a)$ then bind ($b a$) (while $c b$) else unit a

Contents

- Introduction
- Formalizing Probability
- Modelling Probabilistic Programs
- Example Verifications
- Conclusion

Example: The Uniform(3) Distribution

- First make a raw definition of unif3:

```
\(\vdash \quad\) unif3 \(=\)
while ( \(\lambda n . n=3\) )
(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3
```

- Next prove unif3 satisfies probabilistic termination.
- Then independence must follow, and we can use this to derive a more elegant definition of unif3:

$$
\vdash \quad \text { unif3 }=\text { coin_flip }(\text { coin_flip }(\text { unit } 0)(\text { unit } 1))(\text { coin_flip (unit } 2) \text { unif3 })
$$

- The correctness theorem also follows:
$\vdash \forall n . \mathbb{P}\{s \mid$ fst $($ unif3 $s)=n\}=$ if $n<3$ then $\frac{1}{3}$ else 0

Example: Optimal Dice

A probabilistic finite state automaton:

dice $=$
coin_flip
(coin_flip
(coin_flip
(unit none)
(unit (some 1)))
(mmap some
(coin_flip
(unit 2)
(unit 3)))))
(prob_repeat
(coin_flip
(mmap some
(coin_flip
(unit 4)
(unit 5)))
(coin_flip
(unit (some 6))
(unit none))))

Example: Optimal Dice

- Correctness theorem:

$$
\vdash \quad \forall n . \mathbb{P}\{s \mid \text { fst }(\text { dice } s)=n\}=\text { if } 1 \leq n \wedge n \leq 6 \text { then } \frac{1}{6} \text { else } 0
$$

- The dice program takes $3 \frac{2}{3}$ coin flips (on average) to output a dice throw.
- Knuth and Yao (1976) show this to be optimal.
- To generate the sum of two dice throws, is it possible to do better than $7 \frac{1}{3}$ coin flips?

Example: Optimal Dice

On average, this program takes $4 \frac{7}{18}$ coin flips to produce a result, and this is also optimal.
$\vdash \quad \forall n$.
$\mathbb{P}\{s \mid$ fst $($ two_dice $s)=n\}=$ if $n=2 \vee n=12$ then $\frac{1}{36}$ else if $n=3 \vee n=11$ then $\frac{2}{36}$ else if $n=4 \vee n=10$ then $\frac{3}{36}$ else if $n=5 \vee n=9$ then $\frac{4}{36}$ else if $n=6 \vee n=8$ then $\frac{5}{36}$ else if $n=7$ then $\frac{6}{36}$ else 0

Example: Random Walk

- A drunk exits a pub at point n, and lurches left and right with equal probability until he hits home at point 0 .

- Will the drunk always get home?

Example: Random Walk

- We can formalize the random walk as a probabilistic program:

```
\(\vdash \quad \forall n\). lurch \(n=\) coin_flip \((\) unit \((n+1))(\) unit \((n-1))\)
    \(\vdash \quad \forall f, b, a, k\). cost \(f b(a, k)=\operatorname{bind}(b(a))\left(\lambda a^{\prime}\right.\). unit \(\left.\left(a^{\prime}, f(k)\right)\right)\)
    \(\vdash \quad \forall n, k\).
        walk \(n k=\)
        bind (while \(\left(\lambda\left(n, \_\right) .0<n\right)\) (cost suc lurch) \(\left.(n, k)\right)\)
        \(\left(\lambda\left(\_, k\right)\right.\). unit \(\left.k\right)\)
```

-"Will the drunk always get home?" is equivalent to
"Does walk satisfy probabilistic termination?"

Example: Random Walk

- Perhaps surprisingly, the drunk does always get home.
- We formalize the proof of this in HOL
- This shows the probabilistic termination of walk.
- And as usual, independence immediately follows.
- Then we can derive a more natural definition of walk:

$$
\begin{aligned}
& \forall n, k . \\
& \quad \text { walk } n k= \\
& \text { if } n=0 \text { then unit } k \text { else } \\
& \quad \text { coin_flip }(\text { walk }(n+1)(k+1))(\text { walk }(n-1)(k+1))
\end{aligned}
$$

- And prove some neat properties:

$$
\vdash \forall n, k . \forall^{*} s . \text { even }(\text { fst }(\text { walk } n k s))=\text { even }(n+k)
$$

Example: Random Walk

- Can extract walk to ML and simulate it.
- Use high-quality random bits from / dev/random.
- A typical sequence of results from random walks starting at level 1:
$57,1,7,173,5,49,1,3,1,11,9,9,1,1,1547,27,3,1,1,1, \ldots$
- Record breakers:
- 34th simulation yields a walk with 2645 steps
- 135th simulation yields a walk with 603787 steps
- 664th simulation yields a walk with 1605511 steps
- Expected number of steps to get home is infinite!

Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test, used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

$$
\begin{aligned}
& \vdash \quad \forall n, t, s \text {. prime } n \Rightarrow \text { fst (miller } n t s)=\top \\
& \vdash \quad \forall n, t . \neg \text { prime } n \Rightarrow 1-2^{-t} \leq \mathbb{P}\{s \mid \text { fst }(\text { miller } n t s)=\perp\}
\end{aligned}
$$

Here n is the number to test for primality, and t is the maximum number of iterations allowed.

Example: Miller-Rabin Primality Test

- Can define a pseudo-random number generator in HOL, and interpret miller in the logic to prove numbers composite:

$$
\vdash \quad \neg \operatorname{prime}\left(2^{2^{6}}+1\right) \wedge \neg \operatorname{prime}\left(2^{2^{7}}+1\right) \wedge \neg \operatorname{prime}\left(2^{2^{8}}+1\right)
$$

- Or can manually extract miller to ML, and execute it using /dev/random and calls to GMP:

bits	$\mathbb{E}_{l, n}$	MR	Gen time	MR_{1} time
500	99424	99458	0.0443	0.2498
1000	99712	99716	0.0881	0.7284
2000	99856	99852	0.3999	4.2910

Contents

- Introduction
- Formalizing Probability
- Modelling Probabilistic Programs
- Example Verifications
. Conclusion

Conclusion

- Feasible to verify probabilistic programs in a theorem prover, 'just like deterministic programs.'
- Requires much interactive proof to verify each algorithm, with heavy use of automatic proof tools...
- ... but once verified, probabilistic programs can then be used as building blocks in higher-level ones.
- Fixing on coin-flips creates a distinction between guaranteed termination and probabilistic termination.
- Aim for a library of verified probabilistic programs, with ML extractions available.
- Also need more theory: randomized quicksort (and many others) will require expectation.

Related Work

- Semantics of Probabilistic Programs, Kozen, 1979.
- Probabilistic model checking, Kwiatkowska, Norman, Segala and Sproston, 2000.
- Termination of Probabilistic Concurrent Processes, Hart, Sharir and Pnueli, 1983.
- Probabilistic predicate transformers, Morgan, McIver, Seidel and Sanders, 1994-
- Notes on the Random Walk: an Example of Probabilistic Temporal Reasoning, 1996
- Proof Rules for Probabilistic Loops, Morgan, 1996

