
Verifying Probabilistic Programs
using the HOL Theorem Prover

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.1/32

Contents

• Introduction
• Formalizing Probability

• Modelling Probabilistic Programs

• Example Verifications

• Conclusion

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.2/32

Introduction

• Quicksort Algorithm (Hoare, 1962):

fun quicksort elements =

if length elements <= 1 then elements

else

let

val pivot = choose_pivot elements

val (left, right) = partition pivot elements

in

quicksort left @ [pivot] @ quicksort right

end;

• Usually O(n log n) comparisons, unless choice of pivot
interacts badly with data.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.3/32

Introduction

• Example of bad behaviour when pivot is first element:

input: [5, 4, 3, 2, 1]

pivot 5: [4, 3, 2, 1]--5--[]

pivot 4: [3, 2, 1]--4--[]

pivot 3: [2, 1]--3--[]

pivot 2: [1]--2--[]

output: [1, 2, 3, 4, 5]

• Lists in reverse order take O(n2) comparisons.

• So do lists that are in the right order!

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.4/32

Introduction

• Solution: Introduce randomization into the algorithm
itself.

• Pick pivots uniformly at random from the list of
elements.

• Every list has exactly the same performance profile:

• Expected number of comparisons is O(n log n).
• Small class C ⊂ Sn of lists with guaranteed bad

performance has been replaced with a small
probability |C|/n! of bad performance on any input.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.5/32

Introduction

• Broken procedure for choosing a pivot:

fun choose_pivot elements =

if length elements = 1 orelse coin_flip ()

then hd elements

else choose_pivot (tl elements);

• Not a uniform distribution when length of elements > 2.

• Actually reinstates a bad class of input lists taking O(n2)
(expected) comparisons.

• Would like to verify probabilistic programs in a theorem
prover.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.6/32

Motivation

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.7/32

Contents

• Introduction

• Formalizing Probability
• Modelling Probabilistic Programs

• Example Verifications

• Conclusion

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.8/32

The HOL Theorem Prover

• Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOL88.

• Latest release in mid-2002 called HOL4, developed
jointly by Cambridge and Utah.

• Implements classical Higher-Order Logic with
Hindley-Milner polymorphism.

• Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

• Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

• Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.9/32

Verification in HOL

To verify a probabilistic program in HOL:

• Must be able to formalize its probabilistic specification;

E : P(P(B∞)), P : E → R

• and model the probabilistic program in the logic;

prob_program : N→ B∞ → {success, failure} × B∞

• then finally prove that the program satisfies its
specification.

` ∀n. P {s | fst (prob_program n s) = failure} ≤ 2−n

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.10/32

Formalizing Probability

• Need to construct a probability space of Bernoulli(1
2)

sequences, to give meaning to specifications like

P {s | fst (prob_program n s) = failure}

• To ensure soundness, would like it to be a purely
definitional extension of HOL (no axioms).

• Use measure theory, and end up with a set E of events
and a probability function P:

E = {S ⊂ B∞ | S is a measurable set}
P(S) = the probability measure of S (for S ∈ E)

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.11/32

Formalizing Probability

• Formalized some general measure theory in HOL,
including Carathéodory’s extension theorem.

• Next defined the measure of prefix sets (or cylinders):

∀ l. µ {s0s1s2 · · · | [s0, . . . , sn−1] = l} = 2−(length l)

• Finally extended this measure to a σ-algebra:

E = σ(prefix sets)

P = Carathéodory extension of µ to E

• Similar to the definition of Lebesgue measure.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.12/32

Contents

• Introduction

• Formalizing Probability

• Modelling Probabilistic
Programs
• Example Verifications

• Conclusion

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.13/32

Modelling Probabilistic Programs

• Given a probabilistic ‘function’:

f̂ : α→ β

• Model f̂ with a higher-order logic function

f : α→ B∞ → β × B∞

that passes around ‘an infinite sequence of coin-flips.’

• The probability that f̂(a) meets a specification
B : β → B can then be formally defined as

P {s | B(fst (f a s))}

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.14/32

Modelling Probabilistic Programs

• Can use state-transformer monadic notation to express
HOL models of probabilistic programs:

unit a = λ s. (a, s)

bind f g = λ s. let (x, s′)← f(s) in g x s′

coin_flip f g = λ s. (if shd s then f else g, stl s)

• For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (λx. bind dice (λ y. unit (x+ y)))

generates the sum of two dice.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.15/32

Example: The Binomial(n, 1
2) Distribution

• Definition of a sampling algorithm for the Binomial(n, 1
2)

distribution:

` bit = coin_flip (unit 1) (unit 0)

` binomial 0 = unit 0 ∧
∀n.

binomial (suc n) =

bind bit (λx. bind (binomial n) (λ y. unit (x+ y)))

• Correctness theorem:

` ∀n, r. P {s | fst (binomial n s) = r} =

(
n

r

)(
1
2

)n

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.16/32

Probabilistic Termination

• The Binomial(n, 1
2) sampling algorithm is guaranteed to

terminate within n coin-flips.

• The following algorithm generates dice throws from
coin-flips (Knuth and Yao, 1976):

1

2

3

4

5

6

0

• The backward loops
introduce the possibility
of looping forever.

• But the probability of this
happening is 0.

• Probabilistic termination:
the program terminates
with probability 1.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.17/32

Probabilistic Termination

• Probabilistic termination is more expressive than
guaranteed termination.

• No coin-flip algorithm that is guaranteed to terminate
can sample from the following distributions:
• Uniform(3): choosing one of 0, 1, 2 each with

probability 1
3 .

• Geometric(1
2): choosing n ∈ N with probability (1

2)n+1.
The index of the first head in a sequence of coin-flips.

• We model probabilistic termination in HOL using a
probabilistic while loop:

` ∀ c, b, a.
while c b a = if c(a) then bind (b a) (while c b) else unit a

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.18/32

Contents

• Introduction

• Formalizing Probability

• Modelling Probabilistic Programs

• Example Verifications
• Conclusion

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.19/32

Example: The Uniform(3) Distribution

• First make a raw definition of unif3:

` unif3 =

while (λn. n = 3)

(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

• Next prove unif3 satisfies probabilistic termination.

• Then independence must follow, and we can use this to
derive a more elegant definition of unif3:

` unif3 = coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)

• The correctness theorem also follows:

` ∀n. P {s | fst (unif3 s) = n} = if n < 3 then 1
3 else 0

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.20/32

Example: Optimal Dice

A probabilistic finite state automaton:

1

2

3

4

5

6

0

dice =

coin flip

(prob repeat

(coin flip

(coin flip

(unit none)

(unit (some 1)))

(mmap some

(coin flip

(unit 2)

(unit 3)))))

(prob repeat

(coin flip

(mmap some

(coin flip

(unit 4)

(unit 5)))

(coin flip

(unit (some 6))

(unit none))))

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.21/32

Example: Optimal Dice

• Correctness theorem:

` ∀n. P {s | fst (dice s) = n} = if 1 ≤ n ∧ n ≤ 6 then 1
6 else 0

• The dice program takes 32
3 coin flips (on average) to

output a dice throw.

• Knuth and Yao (1976) show this to be optimal.

• To generate the sum of two dice throws, is it possible to
do better than 71

3 coin flips?

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.22/32

Example: Optimal Dice
On average, this program
takes 4 7

18 coin flips to pro-
duce a result, and this is
also optimal.

` ∀n.
P{s | fst (two_dice s) = n} =

if n = 2 ∨ n = 12 then 1
36

else if n = 3 ∨ n = 11 then 2
36

else if n = 4 ∨ n = 10 then 3
36

else if n = 5 ∨ n = 9 then 4
36

else if n = 6 ∨ n = 8 then 5
36

else if n = 7 then 6
36

else 0

12

12

9

10

12

10

8

4

6

4

23

4

3 2

2

35

5

5

6

6

8

8

7

7

7

9

9

11

11

11

10

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.23/32

Example: Random Walk

• A drunk exits a pub at point n, and lurches left and right
with equal probability until he hits home at point 0.

n0 1 i−1 i i+1

HOME PUB
flips coin

heads tails

• Will the drunk always get home?

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.24/32

Example: Random Walk

• We can formalize the random walk as a probabilistic
program:

` ∀n. lurch n = coin_flip (unit (n+ 1)) (unit (n− 1))

` ∀ f, b, a, k. cost f b (a, k) = bind (b(a)) (λ a′. unit (a′, f(k)))

` ∀n, k.
walk n k =

bind (while (λ (n,_). 0 < n) (cost suc lurch) (n, k))

(λ (_, k). unit k)

• “Will the drunk always get home?”
is equivalent to

“Does walk satisfy probabilistic termination?”

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.25/32

Example: Random Walk

• Perhaps surprisingly, the drunk does always get home.

• We formalize the proof of this in HOL
• This shows the probabilistic termination of walk.
• And as usual, independence immediately follows.

• Then we can derive a more natural definition of walk:

` ∀n, k.
walk n k =

if n = 0 then unit k else

coin_flip (walk (n+1) (k+1)) (walk (n−1) (k+1))

• And prove some neat properties:

` ∀n, k. ∀∗s. even (fst (walk n k s)) = even (n+ k)

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.26/32

Example: Random Walk

• Can extract walk to ML and simulate it.

• Use high-quality random bits from /dev/random.

• A typical sequence of results from random walks
starting at level 1:

57, 1, 7, 173, 5, 49, 1, 3, 1, 11, 9, 9, 1, 1, 1547, 27, 3, 1, 1, 1, . . .

• Record breakers:
• 34th simulation yields a walk with 2645 steps
• 135th simulation yields a walk with 603787 steps
• 664th simulation yields a walk with 1605511 steps

• Expected number of steps to get home is infinite!

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.27/32

Example: Miller-Rabin Primality Test

The Miller-Rabin algorithm is a probabilistic primality test,
used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

` ∀n, t, s. prime n ⇒ fst (miller n t s) = >
` ∀n, t. ¬prime n ⇒ 1− 2−t ≤ P {s | fst (miller n t s) = ⊥}

Here n is the number to test for primality, and t is the
maximum number of iterations allowed.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.28/32

Example: Miller-Rabin Primality Test

• Can define a pseudo-random number generator in
HOL, and interpret miller in the logic to prove numbers
composite:

` ¬prime(226

+ 1) ∧ ¬prime(227

+ 1) ∧ ¬prime(228

+ 1)

• Or can manually extract miller to ML, and execute it
using /dev/random and calls to GMP:

bits El,n MR Gen time MR1 time

500 99424 99458 0.0443 0.2498

1000 99712 99716 0.0881 0.7284

2000 99856 99852 0.3999 4.2910

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.29/32

Contents

• Introduction

• Formalizing Probability

• Modelling Probabilistic Programs

• Example Verifications

• Conclusion

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.30/32

Conclusion

• Feasible to verify probabilistic programs in a theorem
prover, ‘just like deterministic programs.’

• Requires much interactive proof to verify each
algorithm, with heavy use of automatic proof tools. . .

• . . . but once verified, probabilistic programs can then be
used as building blocks in higher-level ones.

• Fixing on coin-flips creates a distinction between
guaranteed termination and probabilistic termination.

• Aim for a library of verified probabilistic programs, with
ML extractions available.

• Also need more theory: randomized quicksort (and
many others) will require expectation.

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.31/32

Related Work

• Semantics of Probabilistic Programs, Kozen, 1979.

• Probabilistic model checking, Kwiatkowska, Norman,
Segala and Sproston, 2000.

• Termination of Probabilistic Concurrent Processes,
Hart, Sharir and Pnueli, 1983.

• Probabilistic predicate transformers, Morgan, McIver,
Seidel and Sanders, 1994–

• Notes on the Random Walk: an Example of
Probabilistic Temporal Reasoning, 1996
• Proof Rules for Probabilistic Loops, Morgan, 1996

Verifying Probabilistic Programs using the HOL Theorem Prover – Joe Hurd – p.32/32

	Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Motivation
	Contents
	The HOL Theorem Prover
	Verification in HOL
	Formalizing Probability
	Formalizing Probability
	Contents
	Modelling Probabilistic Programs
	Modelling Probabilistic Programs
	Example: The $Binomial {n}{half }$ Distribution
	Probabilistic Termination
	Probabilistic Termination
	Contents
	Example: The $Uniform {3}$ Distribution
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Random Walk
	Example: Random Walk
	Example: Random Walk
	Example: Random Walk
	Example: Miller-Rabin Primality Test
	Example: Miller-Rabin Primality Test
	Contents
	Conclusion
	Related Work

