Formal Verification of Probabilistic
Programs: Two Approaches

Joe Hurd

joe.hurd@cl.cam.ac.uk

University of Cambridge

Joint work with Annabelle Mclver (Macquarie University) and
Carroll Morgan (University of New South Wales)

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.1/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.2/57

Introduction

-

Probabilistic programs are useful for many applications:

e Symmetry breaking
Rabin’s mutual exclusion algorithm

e Eliminating pathological cases
Miller-Rabin primality test

e Algorithm complexity
Sorting nuts and bolts

e Defeating a powerful adversary
Mixed strategies in game theory

e Solving a problem in an extremely simple way
L Finding minimal cuts J

Formal Verification of Probabilistic Programs — Joe Hurd — p.3/57

Introduction

o N

e Quicksort Algorithm (Hoare, 1962):

fun quicksort elements =

1f length elements <= 1 then elements

else
let
val pivot = choose_pivot elements
val (left, right) = partition pivot elements
in

quicksort left @ [pivot] @ qgquicksort right

end;

e Usually O(nlogn) comparisons, unless choice of pivot
Interacts badly with data.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.4/57

Introduction

o N

e Example of bad behaviour when pivot is first element:

input: (5, 4, 3, 2, 1]
pivot 5: [4, 3, 2, 1]1--5--[]
pivot 4: (3, 2, 1]-——4——1]
pivot 3: [2, 1]1--3--[]

pivot 2: [1]--2--1[]

output: [1, 2, 3, 4, 5]

e Lists in reverse order take O(n?) comparisons.
e So do lists that are in the right order!

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.5/57

Introduction

e Solution: Introduce randomization into the algorithm
itself.

e Pick pivots uniformly at random from the list of
elements.

e Every list has exactly the same performance profile:

Expected number of comparisons is O(nlogn).

Small class C c S, of lists with guaranteed bad
performance has been replaced with a small
probability |C'|/n! of bad performance on any input.

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.6/57

Introduction

e Broken procedure for choosing a pivot:

fun choose_pivot elements =
1f length elements = 1 orelse coin_flip ()
then hd elements

else choose_pivot (tl elements);

e Not a uniform distribution when length of elements > 2.

o Actually reinstates a bad class of input lists taking O(n?)
(expected) comparisons.

e Would like to verify probabilistic programs in a theorem
prover.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.7/57

The HOL Theorem Prover
-

Developed by Mike Gordon’s Hardware Verification
Group in Cambridge, first release was HOLSS.

_atest release in mid-2002 called HOL4, developed
jointly by Cambridge, Utah and ANU.

mplements classical Higher-Order Logic with
Hindley-Milner polymorphism.

Sprung from the Edinburgh LCF project, so has a small
logical kernel to ensure soundness.

Links to external proof tools, either as oracles (e.g., SAT
solvers) or by translating their proofs (e.g., Gandalf).

Comes with a large library of theorems contributed by
many users over the years, including theories of lists,
real analysis, groups etc. |

Formal Verification of Probabilistic Programs — Joe Hurd — p.8/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.9/57

Introduction: Monads

o N

To verity a probabilistic program in HOL.:
e Must be able to formalize its probabilistic specification;
E:P(PB>®), P:&£—-R
e and model the probabilistic program in the logic;
prob_program : N — B~ — {success, failure} x B

e then finally prove that the program satisfies its
specification.

=Vn.P{s | fst (prob_program n s) = failure} < 27"

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.10/57

Contents

Introduction
Approach 1: Monads

Formalizing Probability

Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.11/57

-

Formalizing Probability

-

 Need to construct a probability space of Bernoulii(5)
sequences, to give meaning to specifications like

P{s | fst (prob_program n s) = failure}

e To ensure soundness, would like it to be a purely
definitional extension of HOL (no axioms).

e Use measure theory, and end up with a set £ of events
and a probability function P:

P(5)

{S C B> | S is a measurable set}
the probability measure of S (for S € &)

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.12/57

Formalizing Probability

-

Formalized some general measure theory in HOL,
including Carathéodory’s extension theorem.

Next defined the measure of prefix sets (or cylinders):
V. ¥ {808182 s ‘ [S(), Ceey Sn—l] = l} = 2—(Iength)
Finally extended this measure to a o-algebra:

E = o(prefix sets)
P = Carathéodory extension of yto £

Similar to the definition of Lebesgue measure.

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.13/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability

Modelling Probabilistic
Programs

Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion J

Formal Verification of Probabilistic Programs — Joe Hurd — p.14/57

Modelling Probabilistic Programs
-

e Given a probabilistic ‘function’:

A

fra—p
o Model f with a higher-order logic function
f:ra— B* — 0 x B>

that passes around ‘an infinite sequence of coin-flips.

 The probability that f(a) meets a specification
B : 7 — B can then be formally defined as

P{s| B(fst (f as))}

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.15/57

Modelling Probabilistic Programs

o N

e Can use state-transformer monadic notation to express
HOL models of probabilistic programs:

unita = M\s. (a,s)
bind fg = Ms.let (z,58) « f(s)ingazs
coin_flip f g = As. (if shd s then f else g, stl s)

e For example, if dice is a program that generates a dice
throw from a sequence of coin flips, then

two_dice = bind dice (A z. bind dice (Ay. unit (z +v)))

generates the sum of two dice.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.16/57

Example: The Binomial(n,) Distribution

-

o Definition of a sampling algorithm for the Binomial(n,)
distribution:

- bit = coin_flip (unit 1) (unit 0)
~ binomial 0 = unit 0 A
Vn.

binomial (suc n) =
bind bit (A z. bind (binomial n) (Ay. unit (z +v)))

e Correctness theorem:

r

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.17/57

~ W, P{s| fst (binomial n) = 1} = <n> (1)"

Probabilistic Termination

o The Binomial(n, 5) sampling algorithm is guaranteed to
terminate within n coin-flips.

e The following algorithm generates dice throws from
coin-flips (Knuth and Yao, 1976):

e The backward loops

3)
it introduce the possibility

of looping forever.

e But the probability of this
happening is 0.

At
I
S .
e Probabilistic termination:
the program terminates
with probability 1. N

Formal Verification of Probabilistic Programs — Joe Hurd — p.18/57

Probabilistic Termination

-

e Probabilistic termination is more expressive than
guaranteed termination.

e No coin-flip algorithm that is guaranteed to terminate
can sample from the following distributions:

Uniform(3): choosing one of 0, 1, 2 each with
probability .

Geometric(3): choosing n € N with probability (3)"*.
The index of the first head in a sequence of coin-flips.

e We model probabilistic termination in HOL using a
probabilistic while loop:

= Ve b,a.
\— while ¢ b a = if ¢(a) then bind (b a) (while ¢ b) else unit U

Formal Verification of Probabilistic Programs — Joe Hurd — p.19/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs

Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.20/57

Example: The Uniform(3) Distribution

o N

e First make a raw definition of unif3:

= unif3 =
while (An. n = 3)
(coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) (unit 3))) 3

e Next prove unif3 satisfies probabilistic termination.
e This allows us to derive a recursive definition of unif3:

= unif3 = coin_flip (coin_flip (unit 0) (unit 1)) (coin_flip (unit 2) unif3)

e The correctness theorem also follows:

= Vn.P{s|fst (unif3 s) = n} =if n < 3 then 3 else 0

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.21/57

Example: Optimal Dice

fA probabilistic finite state automaton:

dice =
coin_flip

(prob_repeat
(coin_flip
(coin_flip
(unit none)
(unit (some 1)))
(mmap some
(coin_flip
(unit 2)
(unit 3)))))
(prob_repeat
(coin_flip
(mmap some
(coin_flip
(unit 4)
(unit 5)))
(coin_flip

(unit (some 6))
(unit none)))) J

Formal Verification of Probabilistic Programs — Joe Hurd — p.22/57

Example: Optimal Dice
-

- Vn.P{s|fst (dice s) =n} =if 1 <nAn <6then ¢ else 0

Correctness theorem:

The dice program takes 3z coin flips (on average) to
output a dice throw.

Knuth and Yao (1976) show this to be optimal.

To generate the sum of two dice throws, is it possible to
do better than 73 coin flips?

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.23/57

Example: Optimal Dice

fOn average, this program
takes 4-% coin flips to pro-
duce a result, and this is
also optimal.

- Vn.
P{s | fst (two_dice s) =n} =
if n=2Vn=12then &

36
elseifn:3\/n:11then%
elseifn:4\/n:1Othen33—6

- _ _ 4
elseif n =5V n=9then 36
- _ _ 5
elseif n =6V n = 8 then 36
- _ 6
else if n = 7 then 36

else 0

Formal Verification of Probabilistic Programs — Joe Hurd — p.24/57

Example: Random Walk
-

e A drunk exits a pub at point n, and lurches left and right
with equal probability until he hits home at point O.

heads tails

° ° ° ° ° ° ° ° ° ° ° °
0 | -1 1 1+l n
/t HOME /I\ /t PUB

flips coin

e Will the drunk always get home?

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.25/57

Example: Random Walk

o N

e Perhaps surprisingly, the drunk does always get home.
We formalize the proof of this in HOL.

Thus the formalized random walk satisfies
probabilistic termination.

e [his allows us to derive a natural definition of walk:

- Vn, k.
walk n k =

if n = 0 then unit £ else
coin_flip (walk (n+1) (k+1)) (walk (n—1) (k+1))

e And prove some neat properties:

L = Vn,k. V's. even (fst (walk n k s)) = even (n + k) J

Formal Verification of Probabilistic Programs — Joe Hurd — p.26/57

Example: Random Walk
-

Can extract walk to ML and simulate it.
Use high-quality random bits from /dev/random.

A typical sequence of results from random walks
starting at level 1:

57,1,7,173,5,49,1,3,1,11,9,9,1,1,1547,27,3,1,1,1, . ..

Record breakers:
34th simulation yields a walk with 2645 steps
135th simulation yields a walk with 603787 steps
664th simulation yields a walk with 1605511 steps

Expected number of steps to get home is infinite!

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.27/57

Example: Miller-Rabin Primality Test
- -

The Miller-Rabin algorithm is a probabilistic primality test,
used by commercial software such as Mathematica.

We formalize the test as a HOL function miller, and prove:

= Vn,t,s. primen = fst (millernts)=T
= Vn,t. —primen = 1—-27"<P{s|fst (millernts)= 1}

Here n is the number to test for primality, and ¢ is the
maximum number of iterations allowed.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.28/57

Example: Miller-Rabin Primality Test
- -

e Can define a pseudo-random number generator in
HOL, and interpret miller in the logic to prove numbers
composite:

- ﬂprime(Z26 +1) A ﬂprime(Z27 +1) A ﬂprime(228 + 1)

e Or can manually extract miller to ML, and execute it
using /dev/random and calls to GMP:

bits E;n MR Gen time MR; time
500 99424 99458 0.0443 0.2498
1000 99712 99716 0.0881 0.7284
2000 99856 99852 0.3999 4.2910

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.29/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL

Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.30/57

Introduction: pGCL
-

pPpGCL stands for probabilistic Guarded Command
Language.

It's Dijkstra’'s GCL extended with probabilistic choice
C1 pD €2

Like GCL, the semantics is based on weakest
preconditions.

Important: retains demonic choice
c1 'l ¢y

Developed by Morgan et al. in the Programming
Research Group, Oxford, 1994—

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.31/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL
Formalizing Probabilistic
Guarded Commands

wlp Verification Condition Generator
Example Verifications

Conclusion J

Formal Verification of Probabilistic Programs — Joe Hurd — p.32/57

pGCL Semantics
-

f e Given a standard program C and a postcondition @, let
P be the weakest precondition that satisfies

PlClQ)]

e Precondition P is weaker than P’ if P' = P.

e Such a P will always exist and be unique, so think of C
as a function that transforms postconditions into

weakest preconditions.

e PGCL generalizes this to probabilistic programs:
Conditions o — B become expectations o — posreal.
Expectation P is weaker than P' if P' C P.

L Think of programs as expectation transformers. J

Formal Verification of Probabilistic Programs — Joe Hurd — p.33/57

pGCL Commands

fModel pGCL commands with a HOL datatype: T
command = Assert of (state — posreal) x command
Abort
Skip

Assign of string X (state — Z)

Seq of command x command

Demon of command X command

Prob of (state — posreal) x command x command
While of (state — B) x command

Note: the probability in Prob can depend on the state.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.34/57

Derived Commands

~ Define the following derived commands as syntactic sugar: |

v:i=e = Assighve
C1, C2 —_— Seq C1 C2
c1 M1 co = Demoncy o
c1 p® c2 = Prob (As. p)ci e
Condbcyco = Prob (As.if bsthen1else0) ¢y co
vi={el,....,en} = vi=e M- TTv:i=ey
vi=(er, ,6n) = vi=eq,® vi=(e2,...,en)
pr—c1| o |pp— o =
Abort If none of the p; hold on the current state
[Lic;ci wherel={i|1<¢<nAp;holds}

Lln addition, we write v := n + 1 instead of “v” := As. s “n” + 1.J

Formal Verification of Probabilistic Programs — Joe Hurd — p.35/57

Weakest Preconditions

fDefine weakest preconditions (wp) directly on commands: T

.

(wp (Assert p ¢) = wp ¢)
(wp Abort = Ar. Zero)
(wp Skip = Ar. 1)
(wp (Assign v e) = Ar;s. r (Aw. if w = v then e s else s w))
(wp (Seq c1 c2) = Ar.wp ¢y (wpca 7))
(wp (Demon ¢ ¢3) = Ar. Min (wp ¢1 1) (wp c2 7))
(wp (Prob p c1 ¢2) =

Ar,s.letx «— [psl<iinz(wperrs)+ (1 —x)(wpcars))
A (wp (While b ¢) =

Ar. expect_Ifp (Ae, s. if b s thenwp ce s else r s))

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.36/57

Weakest Preconditions: Example

o N

e The goal is to end up with variables i and j containing
the same value:

post = if 1 = j then 1 else 0.

e First program:

pd = i:=(0,1); j:= {0,1}

~ wp pd poOSt = Zero
e Second program:

dp = j:={0,1}; 7:=(0,1)
= wp dp post = As. 1/2.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.37/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands

wlp Verification Condition
Generator

Example Verifications
Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.38/57

Weakest Liberal Preconditions

o N

Weakest liberal conditions (wlp) model partial correctness.

= (wlp (Assert p ¢) = wlp ¢)
A (wlp Abort = Ar. Magic)
A (wlp Skip = Ar. 1)
A (wlp (Assign v e) = Ar, s. r (Aw. if w = v then e s else s w))
A (wlp (Seq ¢1 c2) = Ar. wlp ¢1 (wlp ca 1))
A (wlp (Demon ¢1 ¢2) = Ar. Min (wlp ¢1 1) (wlp c2 1))
A (wlp (Prob p ¢y o) =
Ar,s.letx «— [ps|<iinxz(wlpeprs)+ (1 —x)(wlpcars))
A (wlp (While b ¢) =
Ar. expect_gfp (Me, s. if b sthenwlp ce s elser s))

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.39/57

Weakest Liberal Preconditions: Example

o N

e We illustrate the difference between wp and wlp on the
simplest infinite loop:

loop = While (As. T) Skip
e For any postcondition post, we have
~ wp loop post = Zero N wlp loop post = Magic
e These correspond to the Hoare triples

/L] loop [post] {T} loop {post}

as we would expect from an infinite loop.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.40/57

Calculating wip Lower Bounds

o N

e Suppose we have a pGCL command c and a
postcondition g.

e We wish to derive a lower bound on the weakest liberal
precondition.

e Can think of this as the first-order query P C wlp ¢ g.
e Idea: use a Prolog interpreter to solve for the variable P.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.41/57

Calculating wlp: Rules
- -

Example Rules:

e Magic C wilp Abort @)

e () C wlp Skip)

e RCwlp(Cy @ N PCwlpCi R =
P C wlp (Seq C7 C3) @

e PPCwpCi QO N PBCwlp(Cy Q) =
Min P, P> C wlp (Demon C Cs) Q

Note: the Prolog interpreter automatically calculates the
‘middle condition’ in a Seq command.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.42/57

Calculating wip: While Loops
f e We use the following theorem about While loops: T

- VP Q,b,c.
PCIfb(wlpcP)Q = PLCwlp (Whilebc)Q

e Cannot use in this form, because of the repeated
occurrence of P in the premise.

e Instead, provide a rule that requires an assertion:
RCwlpCP A PCIfbRQ =
P C wlp (Assert P (While b)) Q

e The second premise generates a verification condition
as an extra subgoal.

e It is left to the user to provide a useful loop invariant in
L the Assert around the while loop. J

Formal Verification of Probabilistic Programs — Joe Hurd — p.43/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications
Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator

Example Verifications

Conclusion

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.44/57

Example: Monty Hall
f contestant switch = T

pc:=41,2,3};
cc:=(1,2,3);

pc#E1ANcc#1 — ac:=1
| pc#E2Ncc#£2 — ac:=2
| pc#E3ANcc#3 — ac:=3;
if —=switch then Skip else
cc:= (if cc#1ANac+#1thenl

else if cc # 2 A ac # 2 then 2 else 3)

The postcondition is simply the desired goal of the
contestant, i.e.,

_ win = if cc = pc then 1 else 0. J

Formal Verification of Probabilistic Programs — Joe Hurd — p.45/57

.

Example: Monty Hall

Verification proceeds by:

-

1. Rewriting away all the syntactic sugatr.

2. Expanding the definition of wp.

3. Carrying out the numerical calculations.

After 22 seconds and 250536 primitive inferences in the

logical kernel:

— wp (contestant switch) win = As. if sSwitchthen 2/3 else 1/3

In other words, by switching the contestant is twice as

likely to win the prize.

Not trivial to do by hand, because the intermediate

expectations get rather large.

|

Formal Verification of Probabilistic Programs — Joe Hurd — p.46/57

Example: Rabin Mutual Exclusion

o N

e Suppose N processors are executing concurrently, and
from time to time some of them need to enter a critical

section of code.

e The mutual exclusion algorithm of Rabin (1982, 1992)
works by electing a leader who is permitted to enter the
critical section:

1. Each of the waiting processors repeatedly tosses a
fair coin until a head is shown

2. The processor that required the largest number of
tosses wins the election.

3. If there is a tie, then have another election.
e Could implement the coin tossing using

\— n:=0;b:=0; While(b=0) (n:=n+1; b:=(0,1)) J

Formal Verification of Probabilistic Programs — Joe Hurd — p.47/57

Example: Rabin Mutual Exclusion

o N

For our verification, we do not model i processors
concurrently executing the above voting scheme, but rather
the following data refinement of that system:

1. Initialize i with the number of processors waiting to
enter the critical section who have just picked a number.

nitialize n with 1, the lowest number not yet considered.
f i = 1 then we have a unique winner: return SUCCESS.
f = 0 then the election has failed: return FAILURE.

Reduce ¢ by eliminating all the processors who picked
the lowest number n (since certainly none of them won
the election).

L 6. Increment n by 1, and jump to Step 3. J

o &~ Wb

Formal Verification of Probabilistic Programs — Joe Hurd — p.48/57

Example: Rabin Mutual Exclusion

o N

The following pGCL program implements this data
refinement:
rabin = While (1 <) (
n:=1;
While (0 < n)
(d:=(0,1);1:=i—d; n:=n—1)
)

The desired postcondition representing a unique winner of
the election is

post = if t =1then1else

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.49/57

Example: Rabin Mutual Exclusion

o N

e The precondition that we aim to show is

pre = if i =1 then 1elseif 1 < i then 2/3 else 0

“For any positive number of processors wanting to enter
the critical section, the probability that the voting
scheme will produce a unique winner is 2/3, except for
the trivial case of one processor when it will always

succeed.”

e Surprising: The probability of success is independent of
the number of processors.

e We formally verify the following statement of partial
correctness:

\— pre = wlp rabin post J

Formal Verification of Probabilistic Programs — Joe Hurd — p.50/57

Example: Rabin Mutual Exclusion

o N

e Need to annotate the While loops with invariants.
e The invariant for the outer loop is simply pre.
e For the inner loop we used

if 0 <n <ithen (2/3)*invarl i n + invar2 ¢ n else 0
where

invarl 1 n =
1 —(ift=nthen (n+1)/2" else if t = n + 1 then 1/2" else 0)

invar2 i n = if i = n thenn/2" else if i = n + 1 then 1/2" else 0

e Coming up with these was the hardest part of the
verification.

Formal Verification of Probabilistic Programs — Joe Hurd — p.51/57

Example: Rabin Mutual Exclusion

o N

The verification proceeded as follows:

1. Create the annotated program annotated_rabin.
2. Prove wlp rabin = wlp annotated_rabin
3. Use this to reduce the goal to

pre C wlp annotated_rabin post

4. This is in the correct form to apply the VC generator.
5. Finish off the VCs with 58 lines of HOL-4 proof script.

|— Leqg (\s. if s"i" = 1 then 1
else if 1 < s"i" then 2/3 else 0)
(wlp rabin (\s. if s"i" = 1 then 1 else 0))

Formal Verification of Probabilistic Programs — Joe Hurd — p.52/57

Contents

Introduction

Approach 1: Monads
Formalizing Probability
Modelling Probabilistic Programs
Example Verifications

Approach 2: pGCL
Formalizing Probabilistic Guarded Commands
wlp Verification Condition Generator
Example Verifications

Conclusion
o

Formal Verification of Probabilistic Programs — Joe Hurd — p.53/57

Conclusion

-

Advantages of Monad Approach

e Grounded in measure theory.
Probabilities more than real numbers.

e More suitable for verifying functional programs.
Simple to lift verified HOL functions to ML.
e Can reason about the distinction between probabilistic
and guaranteed termination.

Practical difference: operating systems typically
provide a source of random bits.

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.54/57

Conclusion

o N

Advantages of pGCL Approach

e Supports the demonic choice programming construct.
Can be used to verify distributed algorithms.

e Verification easier to carry out than monad approach.
Modelling programs with expectation transformers is
a useful abstraction.

e Deep embedding: can quantify over all programs.

May be useful for modelling a ‘spy’ in a security
protocol verification.

Future Work: combine these approaches to get the best of

Lboth worlds. J

Formal Verification of Probabilistic Programs — Joe Hurd — p.55/57

Related Work

e Formal methods for probabilistic programs:

-Hurd’s thesis, 2002.
Probabilistic invariants for probabilistic machines,
Hoang et. al., 2003.

Christine Paulin’s work in Coq, 2002.
Prism model checker, Kwiatkowska et. al., 2000—

e Mechanized program semantics:
Formalizing Dijkstra, Harrison, 1998.
Hoare Logics in Isabelle/HOL, Nipkow, 2001.
Mechanizing program logics in higher order logic,
Gordon, 1989.

A mechanically verified verification condition
generator, Homeier and Martin, 1995. J

Formal Verification of Probabilistic Programs — Joe Hurd — p.56/57

Related Work
| -

e Semantics of Probabilistic Programs:
Semantics of Probabilistic Programs, Kozen, 1979.

Termination of Probabilistic Concurrent Processes,
Hart, Sharir and Pnueli, 1983.

Probabilistic Non-Determinism, Jones, 1990.

Probabilistic predicate transformers, Morgan, Mclver,
Seidel and Sanders, 1994—

e Notes on the Random Walk: an Example of
Probabilistic Temporal Reasoning, 1996
e Proof Rules for Probabilistic Loops, Morgan, 1996

o |

Formal Verification of Probabilistic Programs — Joe Hurd — p.57/57

	Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	The HOL Theorem Prover
	Contents
	Introduction: Monads
	Contents
	Formalizing Probability
	Formalizing Probability
	Contents
	Modelling Probabilistic Programs
	Modelling Probabilistic Programs
	Example: The $Binomial {n}{half }$ Distribution
	Probabilistic Termination
	Probabilistic Termination
	Contents
	Example: The $Uniform {3}$ Distribution
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Optimal Dice
	Example: Random Walk
	Example: Random Walk
	Example: Random Walk
	Example: Miller-Rabin Primality Test
	Example: Miller-Rabin Primality Test
	Contents
	Introduction: pGCL
	Contents
	pGCL Semantics
	pGCL Commands
	Derived Commands
	Weakest Preconditions
	Weakest Preconditions: Example
	Contents
	Weakest Liberal Preconditions
	Weakest Liberal Preconditions: Example
	Calculating $Wlp $ Lower Bounds
	Calculating $Wlp $: Rules
	Calculating $Wlp $: While Loops
	Contents
	Example: Monty Hall
	Example: Monty Hall
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Example: Rabin Mutual Exclusion
	Contents
	Conclusion
	Conclusion
	Related Work
	Related Work

