FUSE: Inter-Application Security for Android

High Confidence Software & Systems (HCSS 2012)

Project Lead: Joe Hurd <joe@galois.com>
Galois Team: Aaron Tomb, David Archer, Jonathan Daugherty

Talk Plan

Introduction

FUSE Project

Analyzing Android Apps
Scaling to the Marketplace

Summary

(@© 2012 Galois, Inc. All Rights Reserved. g a I.O] S

Android & Security

e There is a powerful need for mobile devices that allow users to
run a diverse array of apps while keeping confidential
information secure.

e In recent times the Android mobile platform has rapidly grown
in popularity, but there have been many security problems.

e e.g., jail-breaking, permission escalation, trojan apps.

e “Mobile is the new platform. Mobile is a very intimate

platform. It's where the attackers are going to go.” [Schneier|

(@© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Security Evaluation in the App Life-Cycle

The security of Android apps may be evaluated:

e by the developer (during coding)
e ... but more than 50% of apps include 3rd-party libraries, some
of which download and run code from remote servers [NCSU]
e by the marketplace owner (at release time)
e ... but traditional app evaluation can’t keep up without
automatic tool support
e by the user (at installation time)
e ...but ‘given a choice between dancing pigs and security,
users will pick dancing pigs every time” [Felten & McGraw]
e by anti-virus software on the device (at run-time)
e ... but by then it's too late

And all of these evaluations are restricted to individual apps.

galois

(@© 2012 Galois, Inc. All Rights Reserved.

Android Security Layers

The security of an Android device processing
confidential data breaks down into three cate-
gories:

@ Platform: Apps cannot bypass the
platform security mechanisms.

@® App: Apps contain no exploitable security
vulnerabilities (e.g., by scanning their
source code using static analysis).

© Inter-app: App communications satisfy
the security policy (e.g., all information
flows from red apps to black apps are
mediated by the guard app G).

PLATFORM

This talk is focused on inter-app security.

(© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Built-In Android Inter-App Security

e The problem is that the Android security model based on
permissions does not provide sufficient protection against
inter-app collusions.

e Example: We demonstrated this by implementing a simple
pair of apps:

@ App A requires permission to read your contact information
and also requires permission P.

@® App B declares permission P and uses it to protect an
inter-app capability to publish information to the internet.

e Apps A & B are individually secure, but collectively insecure.

e Also: A user installing apps A & B in this order will not even
be told of the existence of permission P.

(@© 2012 Galois, Inc. All Rights Reserved. g a lO] S

FUSE Project Vision

e The FUSE project is an effort funded by the DARPA
TransApps program to defend against data exfiltration by
multiple colluding apps.

e Galois is developing the FUSE tool to carry out an inter-app
security analysis and reveal app collusions on the marketplace.

e The marketplace contains every app available, and app
collusions can be discovered even if the vulnerable collection
has never been installed on a device.

e Dedicated marketplace servers can perform the analysis,
rather than repeating work on limited-power mobile devices.

(@© 2012 Galois, Inc. All Rights Reserved. g a I.O] S

Adding an App to the Marketplace

e When adding an app to the marketplace, we carry out the
following analysis to compute its inter-app signature:
@ Extract information from the app package manifest.
@® Supplement this by using automatic static analysis techniques
to carry out a white-box analysis of the app code.
© Derive the possible information flows from app sources to sinks
(supported by control flows from app entry points).
e Note that the inter-app signature analysis is compositional.

e i.e., it only analyzes one app at a time.
e Compositional analyses have better scalability properties.

e Add the inter-app signature into a marketplace database.

(@© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Inter-App Security Analysis

e Example Use-Case 1: Data-mining the inter-app signatures.
e Constantly scan the marketplace database for insecure
information flows supported by colluding apps.
e Success Metric: Discover a small set of colluding apps in a
large collection of benign apps.
e Example Use-Case 2: Device provisioning check.

o Perform a deeper inter-app security analysis on the set of apps
selected for installation on a device.

e Success Metric: Detect subtle inter-app collusions within a
small set of apps.

galois

(@© 2012 Galois, Inc. All Rights Reserved.

Feasibility Study

To assess the feasibility of the FUSE project vision, we carried out
a study to answer the following two questions:

@ Is the Android security model and packaging of apps
amenable to an inter-app security analysis?

@® If so, can the analysis scale up to an entire marketplace?

In this talk we present the results of this feasibility study.

(@© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Background: Android Inter-App Communication

e Android apps are made of components.

e Activities provide a user interface to an app.

e Services perform an action in the background.

¢ Broadcast receivers listen for messages from other apps.
e Content providers store potentially-shared data.

e Components communicate using intents, composed of:

e an optional action (e.g., EDIT),
e an optional target component (e.g., a specific editor),
¢ and some optional meta-data (e.g., a file name).

(@© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Background: Android Security Model

e App components are annotated with intent filters that
describe what intents they can respond to.

e The Android security model allows apps to protect critical
components by specifying a permission that calling apps are
required to hold.

e The app components, permissions and intent filters are
specified in the package manifest, which the user must
approve at installation time.

(© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Feasibility Study: Analyzing App Packages

Most of the relevant information for an inter-app security
analysis is readily available in the package manifest.

e Components, permissions and intent filters are present.
o Intent calls are missing.
e The FUSE project vision relies on a capability to
automatically extract security-relevant information directly
from app packages.

e The absence of intent calls from package manifests offered an
opportunity to test the feasibility of this.

o Feasibility Test: Is it possible to automatically extract intent
call information from an app package?

(@© 2012 Galois, Inc. All Rights Reserved. g a lO] S

Inferring Inter-App Communication

e All inter-app communication occurs in three steps:
@ Create an intent object.
@® Set the action, component or meta-data fields of the intent.
© Call one of a small set of app communication methods
(startActivity, startService, etc.)

e We can identify all occurrences of these steps by inspecting
the bytecode in the app package.

e No need for the app source code.
e No need to trust the compiler.

e Standard static analysis techniques can identify object
creation, field update and method calls.

(@© 2012 Galois, Inc. All Rights Reserved. g a I.O] S

The FUSE App Analysis Tool

e To support the feasibility study we developed the FUSE tool to
compute conservative over-approximations of app intent calls.
e A conservative over-approximation is appropriate for an
inter-app security analysis.
¢ No False Negatives: If an intent call is possible, the FUSE
tool will identify it.
e Some False Positives: The FUSE tool may identify intent
calls that will never be executed.
e Note: Computing the precise set of possible intent calls is an
undecidable problem.

(@© 2012 Galois, Inc. All Rights Reserved. g a lO] S

External Tools

@ The FUSE tool uses the open source dex2jar tool to convert
the Dalvik bytecode in the app package to equivalent Java
bytecode.

e Pro: This allows us to reuse Java infrastructure (e.g., the
bytecode parser).

e Con: dex2jar sometimes generates semantically ill-formed
Java bytecode (we have filed a bug report).

® The FUSE tool also uses the open source apktool to extract
the manifest from the app package.

(@© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Core Static Analysis

The core of the FUSE tool is a static analysis of Java bytecode
that operates as follows:
@ Extract information from the bytecode.
o |dentify instructions that create new intent objects.

o |dentify instructions that set intent action or component fields.
o |dentify app communication method calls (e.g., startService).

® For each method of an app component:

e If it contains one instruction to create an intent object and one
app communication method call then one intent call is
generated for the component.

o [f it contains multiple create instructions or communication
calls then we generate intent calls for all possible
combinations: imprecise but conservative.

e The precision can be improved with well-known techniques.

(@© 2012 Galois, Inc. All Rights Reserved. g a lO] S

FUSE Tool Use

e The FUSE tool computes the intent calls from an app
package as follows:

@ The dex2jar tool converts the Dalvik bytecode in the app
package to a Java JAR file.

@® The apktool extracts the manifest from the app package.

© The core static analysis extracts the intent calls from the Java
bytecode in the JAR file.

@ The intent calls are added to the package manifest, and the
result is output in extended package manifest format.

e The extended package manifest format is an extension of the
XML standard format for Android package manifests which
includes the possible intent calls for each app component.

(© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Extended Package Manifests

e The intent-filter tag already exists in manifest files,
describing the form of intents a component can receive.

e The intent-call tag is added by the FUSE tool, describing the
form of intents a component can issue.

Extended Package Manifest (Excerpt from a password safe)

<service android:name=".service.ServiceDispatchImpl">
<intent-call>

<action android:name="org.openintents.action.CRYPTO_LOGGED_OUT" />
</intent-call>

<intent-filter>

<action android:name=".safe.service.ServiceDispatchImpl" />
</intent-filter>

</service>

e The Android security model could be extended to enforce
intent calls in package manifests as it already does for intent
filters, making inter-app communication more explicit.
© 2012 Galois, Inc. All Rights Reserved. g a lO] S

Feasibility Study: Analyzing App Packages

e The static app analysis performed by the FUSE tool:
e works quickly on existing apps; and
e can be easily integrated with other tools.

o Feasibility Assessment: Android app packages can be
analyzed using well-understood static analysis techniques.

(@© 2012 Galois, Inc. All Rights Reserved. g a lo] S

Feasibility Study: Scaling to the Marketplace

e To test the scalability of the inter-app security analysis we
assembled a benchmark of 104 apps:

e 42 apps from the Android SDK R8 (Android 2.2);
e plus 62 open source apps hosted on code.google.com.

e The 104 apps consisted of:

e 920 components;

e 3861 intent filters;
o plus 357 intent calls added by the FUSE tool.

o Feasibility Test: Is it possible to analyze the inter-app calls
in this benchmark set of apps?

galois

(@© 2012 Galois, Inc. All Rights Reserved.

Inter-App Control Flow Implemented in SQL

e To support the feasibility study, we developed an inter-app
control flow analysis as a sequence of SQL statements:

@ Initialization: For each app, insert the information from the
extended package manifests.

@® Inter-App Component Calls: Create a database table
relating app components with matching intent calls and intent
filters (and also respecting permissions).

© Inter-App Calls: Create a database table projecting the
inter-app component calls to the owning app, relating apps
that may call each other.

galois

(@© 2012 Galois, Inc. All Rights Reserved.

Feasibility Study: Scaling Up To An Apps Marketplace

e We used the simple database engine SQLite (version 3.6.12)
to compute the inter-app control flow on our benchmark set
of 104 apps.

e The inter-app component call table resulted in 3,290 possible
intent calls between app components.

e The inter-app call table resulted in 1,152 possible intent calls
between apps.

e On a 2.53GHz MacBook Pro with 8Gb of RAM the
experiment completed within 10 seconds.

o Feasibility Assessment: Existing database technology gives
promising results for scaling up the inter-app security analysis.

(@© 2012 Galois, Inc. All Rights Reserved. g a lO] S

Viewing Inter-App Cont

The SQLite database containing all the inter-app control-flow data:

(@) SQLite Manager - /Users/joe/dev/fuse/data/analysis/app.db
x ‘N = ,£ o m 5 Directory P | select Profile Database)

(rrre— [Structure Browse & Search | Execute SQL DB Settings |
—_—
> Master Table (1)
¥ Tables (13) TABLE package_transition (__ Search) (__ShowAll) (_ Add) (_ Duplicate
> component rowid source target
» component_transition 1 droid. i droid.
b component_transition1 2 com.android.alarmclock com.android.alarmelock
» compenent_transition2 3 com.android.alarmclock com.android. sewings
> intent_call 4 d.b droid,
¥ intent_filter s droid.b croldlb
> intent_transition
b intent_transition1 7 droid.b droid.
¥ intent_transition2 8 droid.b droid.email
b intent_transition3 9 droid.b droid.fallback
I package_transition . 10 droid.b droid.gallery
> permission 1 com.android browser com.android. htmiviewer
b uses_permission 12 droid.b droid.
» Views (0) 13 com.android browser com.android.music
P Indexes (11) 14 droid.b droid.
» Triggers (0} 15 com.android browser com.android phone
<< 1< 1 10 100 of 1152
<
5Qlite 3.7.4 Gecko 2.0 Exclusive Number of files in selected directory: 12

i

The highlighted row shows a possible intent call from the Android
browser to the contacts app.

(© 2012 Galois, Inc. All Rights Reserved. g a lo] S

=
o
L
©
—
=
c
(@)
@)
o
o
<
s
[
+
=
o0
=
N
“©
>
Ao
>

This is a directed graph view of the calls between the 62 open source

apps from code.google. com:

galois

(@© 2012 Galois, Inc. All Rights Reserved.

Zooming in on Inter-App Control Flow

e Potential insecurities can be observed in the inter-app call graph.

e Example: A notepad app has access to both the password safe and
an SMS app:

(@© 2012 Galois, Inc. All Rights Reserved. g a I.O] S

Feasibility Study Results

e We carried out a study to test the feasibility of the following
approach to inter-app security analysis:
@ Use static program analysis on individual apps to extract
inter-app signatures.
® Query combinations of these signatures to reveal insecure
inter-app behavior.

o We demonstrated the feasibility of this method by
implementing an inter-app control-flow analysis on a
benchmark set of 100 apps:

@ The FUSE static analysis tool extracted the possible intent
calls from individual apps.

@® The intent calls and package manifest data were used to
populate a database, and SQL queries extracted possible
inter-app calls exercising dangerous permissions.

(@© 2012 Galois, Inc. All Rights Reserved. g a I.O] S

e We are currently extending the FUSE tool to perform
inter-app information flow and value analysis.

e Information flow analysis reveals threats to confidentiality and
integrity on mobile device data.

e Value analysis allows us to precisely define possible app
behavior (e.g., narrowing down the possible target URLs when
exercising an INTERNET permission).

e We are also developing a sample set of security policies that
constrain inter-app communication.

e The policy rules will be automatically compiled to queries over
the marketplace database of inter-app signatures.

e |t is important to separate the policy from the checking tool to
ease maintainence and support deployment in new domains.

(@© 2012 Galois, Inc. All Rights Reserved. g a I.O] S

Questions?

http://www.galois.com/

joe@galois.com

(@© 2012 Galois, Inc. All Rights Reserved. g a l.O] S

	Introduction
	FUSE Project
	Analyzing Android Apps
	Scaling to the Marketplace
	Summary

