
Predicate Subtyping in HOL 1

Predicate Subtyping in HOL

Joe Hurd

University of Cambridge

1. Motivation

2. Architecture

3. Automation

4. Contextual Rewriter

5. Set Membership Prover

6. Comparison with PVS

7. Evaluation

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 2

Motivation

A predicate subtype P : α→ B is the set of

elements x in the simple type α that satisfy P x.

They are used to refine the type-system.

Here are some examples:

∀x ∈ even. ∃ p q ∈ prime. 4 ≤ x ⇒ x = p+ q

/ ∈ real→ nzreal→ real

Note: real has simple type R→ B and always

returns true.

Predicate subtyping is very useful for formalizing

abstract algebra:

∀G ∗. group (G, ∗) ⇒
∗ ∈ G→ G→ G ∧
∀x y z ∈ G. (x ∗ y) ∗ z = x ∗ (y ∗ z)

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 3

Architecture

Two competing predicate subtyping architectures:

• PVS: Predicate subtyping is part of the

type-system, making it undecidable, and the

user must prove theorems to show all the

terms are well-typed. Mike Jones’ work

emulated this approach in HOL.

• HOL: The type-system is decidable, and any

predicate subtyping must be explicit in the

terms. During verification, ‘type-checking’

subgoals will naturally arise. Wai Wong’s

restricted quantifier library falls into this

category.

Our work extends the second design.

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 4

Automation

How can we apply the theorem

∀x ∈ nzreal. x/x = 1

to y/y?

We must prove the condition y ∈ nzreal.

However, if the term y/y type-checks according to

the predicate subtype of /, we already know this

must be true.

Therefore we can safely perform the rewrite, and

assume the condition.

Exactly the same situation arises with restricted

beta reduction:

Γ ` (λx ∈ P. M x) N

→ Γ ∪ {P N} `M N

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 5

Contextual Rewriter

We have implemented a contextual rewriter, so

that the assumptions that are made have the

proper logical context at the top-level.

For example, applying the theorem

∀x ∈ nzreal. x/x = 1

to the term

P y ⇒ Q (y/y)

yields

{P y ⇒ y ∈ nzreal} ` P y ⇒ Q 1

These type-checking assumptions that are made

during rewriting are passed on to the user as

extra subgoals.

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 6

Set Membership Prover

Many of the extra type-checking subgoals are

trivially solved, and we have implemented a naive

prover. It works by collecting facts of the form

x ∈ S and S ⊂ T , and executing a fixed-depth

prolog search with the following rules:

x ∈ UNIV

x ∈ (x INSERT S)

x ∈ S ⇒ x ∈ (y INSERT S)

f ∈ (S→ T) ∧ x ∈ S ⇒ f x ∈ T

S ⊂ T ∧ x ∈ S ⇒ x ∈ T
x ∈ S ∧ x ∈ T ⇒ x ∈ (S ∩ T )

x ∈ S ⇒ x ∈ (S ∪ T )

x ∈ T ⇒ x ∈ (S ∪ T )

x ∈ S ⇒ f x ∈ (IMAGE f S)

This was sufficient to solve automatically every

type-checking subgoal that arose in my

development.

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 7

Comparison with PVS

PVS HOL + these tools

Permanent layer Phantom layer

Part of type-system Atop simple type theory

All terms must Subtype-checking is not

subtype-check enforced (or enforceable)

Type-checking phase As properties are needed

TV licence Pay-per-view

(could end up paying more)

Finds bugs in specs These same bugs will only

before verification appear at verification time

(sooner using these tools)

GRIND Contextual rewriter

Type judgements Set membership prover

One type per constant Unlimited

(be careful though!)

Joe Hurd University of Cambridge



Predicate Subtyping in HOL 8

Evaluation

• 1000 line group theory development using

restricted quantifiers and these tools.

• Full predicate subtyping has always been

possible in HOL. Restricted quantifiers

simplified the notation; these tools increase

the level of automation.

• Relative proof cost compared to an explicit

type-checking phase is lowest when predicate

subtyping is kept to a minimum.

• More predicate subtyping gives more

debugging benefits, but also more

type-checking subgoals.

• Moral: need automatic type-checking tools

(like the set membership prover) that handle

virtually every case.

Joe Hurd University of Cambridge


