
The OpenTheory Standard Theory Library

Joe Hurd1

Galois, Inc.
joe@gilith.com

http://www.gilith.com

Abstract. Interactive theorem proving is tackling ever larger formal-
ization and verification projects, and there is a critical need for theory
engineering techniques to support these efforts. One such technique is
cross-prover package management, which has the potential to simplify
the development of logical theories and effectively share theories between
different theorem prover implementations. The OpenTheory project has
developed standards for packaging theories of the higher order logic im-
plemented by the HOL family of theorem provers. What is currently
missing is a standard theory library that can serve as a published con-
tract of interoperability and contain proofs of basic properties that would
otherwise appear in many theory packages. The core contribution of this
paper is the presentation of a standard theory library for higher order
logic represented as an OpenTheory package. We identify the core theory
set of the HOL family of theorem provers, and describe the process of
instrumenting the HOL Light theorem prover to extract a standardized
version of its core theory development. We profile the axioms and the-
orems of our standard theory library and investigate the performance
cost of separating the standard theory library into coherent hierarchical
theory packages.

1 Introduction

Interactive theorem proving has grown from toy examples to major formalization
and verification projects in mathematics and computer science. Recent examples
include: the 20 man-year verification of the seL4 operating system kernel [24];
the CompCert project, which verified an optimizing compiler from a large subset
of C to PowerPC assembly code [25]; and the Flyspeck project, which aims to
mechanize a proof of the Kepler sphere-packing conjecture [14].

Just as the term software engineering was coined in 1968 [26] to give a name
to techniques for developing increasingly large programs, there is now a need for
theory engineering techniques to develop increasingly large proofs (“proving in
the large”). One software engineering technique that can be applied to proof de-
velopment is effective package management. Modern operating systems [8] and
programming languages [6] bundle software into packages that carry their de-
pendencies, supporting easy distribution and automatic checking at installation
time to ensure that the system can properly support the package. The goal of

the OpenTheory project is to transfer the benefits of package management to
aid the development of logical theories.1

The initial case study of the OpenTheory project is to develop the infras-
tructure necessary to port theories between three related interactive theorem
provers: HOL Light [15], HOL4 [28] and ProofPower [23]. These three theorem
provers implement the same higher order logic, namely Church’s simple theory
of types extended with Hindley-Milner style type variables [10]. They also have
a similar design of an interactive interface where the user invokes proof tools to
prove subgoals, built on top of a small logical kernel that enforces soundness.
The logical kernel design is inherited from Milner’s pioneering work on the LCF
theorem prover [11], which Gordon reused to implement higher order logic in
the HOL theorem prover [12], and from which the three chosen theorem provers
are all descended [13].

Even though HOL Light, HOL4 and ProofPower implement the same logic
using the same conceptual design, they each contain significant theory formal-
izations that are not accessible to each other. For example, HOL Light has a
formalization of complex analysis [16], HOL4 has a formalization of probabil-
ity theory [18], and ProofPower has a formalization of the Z specification lan-
guage [2]. The reason that these useful theories are not available in all of the
theorem provers is that it requires significant human effort to port a theory to
a new environment, due to differences in the native theories and proof tools.2

To overcome the differences between the name and behavior of proof tools
between the theorem provers, the OpenTheory project has developed a standard
article file format for serializing proofs of higher order logic [21]. Proofs are
reduced to a standard set of primitive inferences that are precisely specified and
can be simulated by any theorem prover in the HOL family. This bypasses the
differences in the proof tools, at the cost of archiving proofs in a format that is
hard to modify.

Once the differences between the proof tools have been removed as an obsta-
cle, the challenge that remains is to reconcile the differences between the native
theories available in each theorem prover. To illustrate the need for this, suppose
we desire to port the theory of complex numbers from HOL Light to HOL4. One
way to do this is to export every theory that the HOL Light complex numbers
depend on as proof articles, and then import these into HOL4. However, now
we have two copies of the theory of real numbers inside HOL4: the original real
number theory of HOL4 and the real number theory imported from HOL Light
that the complex numbers depend on. Because of this, we cannot easily combine
the new theory of complex numbers with other HOL4 theories that depend on
the original real number theory, such as the theory of probability.

To avoid this duplicate theory problem, when we speak of porting theories
between theorem provers we usually have in mind the following procedure:

1 The OpenTheory project homepage is http://gilith.com/research/opentheory
2 The author has first-hand experience of this: his introduction to theorem proving

was porting a theory of real numbers from HOL Light to HOL4.

1. Export the theory of complex numbers from HOL Light, leaving the ref-
erences to native theories as uninterpreted type operators, constants, and
assumptions.

2. Import the theory of complex numbers into HOL4, binding the references to
native theories to native type operators, constants and theorems.

Note that the success of this porting procedure depends on there being a degree
of alignment between the native theories of HOL Light and HOL4. The native
theories do not have to be identical: type operators and constants may have
different names in the two theorem provers; and HOL4 may contain additional
theorems beyond the set required for the import of the HOL Light theory to suc-
ceed. But beyond these superficial differences, to port a theory from the theorem
prover context A to B there must be a semantic embedding A → B mapping
type operators and constants from A to ones in B with properties that are at
least as logically strong. This notion of semantic embeddings between theorem
prover contexts has been formalized in category theory as theory morphisms [32],
and this provides a theoretical foundation for the OpenTheory project.

To support the use case of porting theories between HOL Light, HOL4 and
ProofPower, we will need semantic embeddings from the core theories of each
theorem prover to the core theories of the others. As an alternative to explicitly
maintaining these semantic embeddings, we instead take the set of core theories
that the theorem provers share and release a standard theory library of them in
OpenTheory format. The advantage of a standard theory library are as follows:

– Each theorem prover is responsible for maintaining mappings between its
core theories and the OpenTheory standard library, reducing the number of
semantic embeddings that must be maintained from O(n2) to O(n) (where
n is the number of theorem provers that wish to share theories).

– The standard theory library is a published contract of interoperability: “If
your theory uses only the standard theory library, we promise it will work on
all of the supported theorem provers.”

– If a property such as associativity of addition is in the standard theory
library, it does not need to be proved in every theory that relies on it. This
is analogous to dynamic linking of programs to standard libraries.

– Constructions in the standard library can serve as standard specifications. A
formal proof of Fermat’s Last Theorem that uses the version of the natural
numbers in the standard theory library is much easier to check than one that
uses a custom version.

This paper presents the OpenTheory standard theory library and describes
the process of identifying and extracting the core theory set of the HOL family
of theorem provers. The proof articles that result from this process are combined
to form higher level theories such as natural numbers or lists, and the final step
is to combine these to form the standard theory library.

The remainder of the paper is structured as follows: Section 2 reviews the
OpenTheory formats and infrastructure that we used and extended to support

this work; Section 3 identifies the core theories that are included in the stan-
dard theory library; Section 4 describes the process of extracting standard proof
articles by instrumenting an existing theorem prover; Section 5 profiles the re-
sult of combining proof articles into the standard theory library; and finally
Sections 6–8 examine related work, summarize and consider future directions.

2 The OpenTheory Proof Archive

In this section we review the OpenTheory proof article [19] and theory pack-
age [20] formats, which are used to represent the standard theory library. These
formats are now stable, and tools for processing theory packages are included
with the OpenTheory toolset.3 Tools exist for displaying meta-information, query-
ing dependencies, pretty-printing assumptions and theorems, and compiling the-
ory packages to proof articles.

2.1 Articles of Proof

The unit of composition in OpenTheory is a higher order logic theory Γ . ∆,
which consists of:

1. A set Γ of assumption sequents.
2. A set ∆ of theorem sequents.
3. A proof that the theorems in ∆ logically derive from the assumptions in Γ .

An article is a compact representation of a higher order logic theory, encoded
as instructions for a stack-based virtual machine. The format was designed to
simplify the process of importing theories into theorem prover implementations:
all that is required is to execute the article instructions in the desired context.

The initial version of the proof article format [19] contained instructions for
constructing types and terms, but the inference rules were system dependent.
However, after receiving comments from the interactive theorem proving com-
munity, this system dependence was replaced with a set of 10 article instructions
for executing precisely specified primitive inferences. These new instructions are
shown in Figure 1.

2.2 Theory Packages

The proof article format supports a theorem prover independent representation
of theories. The theory package format is a domain-specific language for com-
bining theories, supporting the following operations:

1. Renaming type operators and constants in theories, either to avoid names-
pace clashes or to bind the arguments of a parametric theory.

2. Forming compound theories by satisfying the assumptions of one theory with
the theorems of others.

` t = t
refl t {φ} ` φ assume φ

Γ ` φ = ψ ∆ ` φ
Γ ∪∆ ` ψ eqMp

Γ ` t = u

Γ ` (λv. t) = (λv. u)
absThm v

Γ ` f = g ∆ ` x = y

Γ ∪∆ ` f x = g y
appThm

Γ ` φ ∆ ` ψ
(Γ − {ψ}) ∪ (∆− {φ}) ` φ = ψ

deductAntisym
Γ ` φ

Γ [σ] ` φ[σ]
subst σ

` (λv. t) u = t[u/v]
betaConv ((λv. t) u) ` c = t

defineConst c t

` φ t
` abs (rep a) = a ` φ r = (rep (abs r) = r)

defineTypeOp n abs rep vs

Fig. 1. The OpenTheory logical kernel.

function

function-def

 schroeder-bernstein

natural

natural-def

natural-induction

Fig. 2. Example theory dependency graph.

Theory packages are hierarchical, using the above operations to build up
from basic theory packages containing proof articles to more complex theories.
An important concept for a standard theory library is the compilation theory
package, which is designed to help construct coherent theory packages in the face
of the complex dependency structures that often arise in theory development.

An example of compilation theories is shown in Figure 2, where four the-
ory packages are contained in two compilation theory packages, and the arrows
indicate package dependencies. The statement of the Schroeder-Bernstein theo-
rem depends only on the function theory definitions, but the proof also depends
on natural number induction. Natural numbers in turn are constructed using
function theory definitions. The most coherent function theory package would
contain both the function theory definitions and the Schroeder-Bernstein the-
orem, but this package would then have a cyclic dependency with the natural
number theory package. Defining the function theory package as a compilation
of two theory packages allows finer grained theory package dependencies, which
removes the offending cycle.

Early experimentation with the theory package language revealed some de-
sirable properties of a reusable theory package:

1. a clear topic (e.g., trigonometric functions);
2. assumptions that are satisfied by the theorems of other reusable theory pack-

ages;
3. a carefully chosen set of theorems, presenting an abstract interface to the

theory (hiding construction details).

We will refer to these guiding principles when describing the construction details
of the OpenTheory standard theory library.

3 Identifying Core Theories

The first step in the construction of the OpenTheory standard theory library is to
identify the core theories shared by the HOL family of theorem provers. Looking
at the system documentation and source code for HOL Light, HOL4 and Proof-
Power turns up the following set of core theories, sorted into the OpenTheory
standard namespace:

– Data.Bool – A theory of the boolean type
– Data.List – A theory of list types
– Data.Option – A theory of option types
– Data.Pair – A theory of product types
– Data.Sum – A theory of sum types
– Data.Unit – A theory of the unit type
– Function – A theory of functions
– Number.Natural – A theory of natural numbers

3 The OpenTheory toolset is available for download at http://gilith.com/software/
opentheory

– Number.Numeral – A theory of natural number numerals

– Relation – A theory of relations

This is not intended to be a complete list, but sufficient to demonstrate the
practicality of building an OpenTheory standard theory library, and full-featured
enough upon which to build some non-trivial theories. The above theories are
all present in version 1.0 of the standard theory library, and future versions can
standardize other shared theories such as integers, reals, sets, characters and
strings.

4 Extracting Standard Articles

The next step in the construction of the standard theory library is to represent
the core theories as a set of proof articles that can be turned into basic theory
packages. One approach to this would be to create an OpenTheory version of
the standard theory library from scratch, proving everything using the standard
inference rules. However, since the standard theory library is (by definition)
shared by each member of the HOL family of theorem provers, an alternative
to this is to instrument one of the theorem provers to emit its version of the
standard theory library in proof article format. We take this latter approach and
choose the HOL Light theorem prover as having the simplest logical kernel to
instrument. The remainder of this section describes the experience of extracting
standard proof articles from HOL Light theories.

4.1 Granularity

With the primitive inferences of HOL Light instrumented to emit proof articles,
the next choice to be made is the granularity of the proof articles. At the coarsest
extreme of the granularity spectrum, the whole standard theory library could
be emitted as one big proof article. However, this would violate Guideline 1
of constructing reusable theories from Section 2.2, because the resulting theory
would not have a clear topic. At the finest extreme, we could put every exported
theorem into its own proof article file, with the caveat that proof articles that
make definitions need to export enough theorems to form a minimal abstract
interface. This would result in a set of theories that score well according to the
reusability guidelines (except possibly for Guideline 3 that asks for a carefully
chosen set of theorems), but introduces myriad theory packages to be stored and
processed.

We choose an intermediate point on the granularity spectrum where theory
packages that make definitions export enough theorems to form a minimal ab-
stract interface, and theory packages that make no definitions can export any
number of theorems so long as they form a coherent topic. This design choice
is made to maximize the reusability of the resulting theory packages while re-
specting performance goals.

Another issue is that there are two kinds of theorems proved in HOL Light:
visually appealing theorems designed for the user to apply as lemmas in fu-
ture proofs; and auxiliary pro-forma theorems designed to be used internally by
proof tools. The reusable theory guidelines dictate that only the visually appeal-
ing theorems should appear in the standard theory library. This is achieved by
collecting together the auxiliary theorems as they are proved and storing them in
a separate proof article, which is ‘statically linked’ to standard proof articles as
they are generated. When the whole standard theory library has been harvested,
the auxiliary proof article is packaged as a special theory to support theory de-
velopment building on the standard theory library using the HOL Light proof
tools.

4.2 Standardization

In addition to statically linking auxiliary theorems, we used other methods to
standardize the proof articles generated from HOL Light. As a simple example,
the names of HOL Light type operators and constants are mapped into the
OpenTheory standard namespace (as described in Section 3).

Another source of system dependence is the presence of ‘tags’ in terms. For
example, in HOL Light every natural number numeral is a term of the form
NUMERAL t, where the constant NUMERAL is defined as a synonym for the
identity function. The presence of NUMERAL has no logical significance, but is
a tag to help proof tools and other theorem prover infrastructure. Different the-
orem prover implementations may have different tagging schemes, so we remove
tags from theorems that we add to the standard theory library. The scheme we
use to do this is to rename the tag constant NUMERAL to be called Unwanted.id,
and then rewrite all generated proof articles to remove all type operators and
constants in the Unwanted namespace.

Finally, during the process of extracting proof articles from HOL Light we
discovered many improvements to HOL Light that would simplify the extraction
process, including: removing duplicate theorems; simplifying the definition of
numerals; universally quantifying theorems with free variables. We submitted
these as patches to the HOL Light developer, and several have already been
incorporated into the upstream version.

4.3 Partial Functions

Partial functions require special handling in a classical two-valued logic such
as higher order logic. For example, the natural number div and mod functions
are not mathematically defined when the denominator is zero, but since every
function in higher order logic is total the term 1 div 0 must be some natural
number. In this case the solution we adopt is for the theory defining div and
mod to export the single theorem

` ∀m,n. n 6= 0 =⇒ m = (m div n) ∗ n+m mod n ∧ m mod n < n ,

preventing client theories from deducing anything about the value 1 div 0 (that
could not be deduced about every natural number).

There are a few situations when this information-hiding approach cannot
be used. Both HOL Light and HOL4 (but not ProofPower) define a predecessor
function pre as an inverse to the successor function, and set pre 0 = 0 even though
the inverse of successor is not mathematically defined for zero. The value of pre 0
is subsequently relied on, among other things to define cut-off subtraction, and so
we choose to ‘grandfather’ the value of pre 0 into the standard library. However,
in the theory that defines the predecessor function we separate the definition
into the two theorems

` pre 0 = 0 and ` ∀n. pre (suc n) = n ,

to encourage client theories to rely only on the standard domain.

5 The Standard Theory Library

After identifying the core theories of the HOL family of theorem provers and
extracting them as proof articles, the final step is to use them to construct the
standard theory library.

5.1 Construction

This is the procedure for converting the proof articles extracted from HOL Light
into the standard theory library:

1. Create a basic theory package for each proof article.
2. Create theory packages for higher-level topics, such as bool or list, which

are compilations of lower-level theory packages.
3. Create a theory package called base, which is a compilation of the highest-

level theory packages.

Although the standard theory library consists of the whole collection of these
theory packages, the base theory package exports all the theorems needed to
build client theories on top of the standard theory library. The other theory
packages can be regarded as scaffolding by most users of the standard theory
library, and safely ignored.

As we expected, it was straightforward to carry out Steps 1 and 2 of the
above procedure. We expected the difficulty to appear in Step 3, when compil-
ing highest level theories with potentially complex dependencies between them.
Surprisingly, it turned out that there was a natural order to arrange the highest-
level theories where each one only depended on the previous ones: bool; unit;
function; pair; natural; relation; sum; option; and list. Because of this,
there was no need to unpack the compilation theories to eliminate cyclic de-
pendencies as described in Section 2.2. The real-life example shown in Figure 2
demonstrates that this functionality will be required for some theories, but the
current version of the standard theory library is naturally acyclic.

5.2 Axioms

Before looking at the theorems and proofs of the standard theory library, it is
worth examining what it depends on. The OpenTheory primitive inference rules,
shown in Figure 1, were taken from HOL Light and refer only to:

– the type operator bool;
– the function space type operator · → · ; and
– the equality constant = : α→ α→ bool.

These two type operators and one constant can be considered to be implicitly
axiomatized by the primitive inferences. In addition, the standard theory library
explicitly asserts the following three axioms, each of which is contained in its
own theory package:

` ∀t. (λx. t x) = t (axiom-extensionality)
` ∀P, x. P x =⇒ P (select P) (axiom-choice)
` ∃f : ind→ ind. injective f ∧ ¬surjective f (axiom-infinity)

The formulation of these three axioms is taken from HOL Light, but can be
proved as theorems in HOL4 and ProofPower.

The standard theory library offers a simple way to check that a theory pack-
age developed on a HOL family theorem prover will easily port to other theorem
provers. Just statically link the new theory package to the base theory pack-
age, and any system dependent behavior will appear as extra axioms (beyond
the standard three). This static linking procedure could also be used to develop
theories that avoid the axiom of choice, while still making use of theorems from
the standard theory library that do not use choice in their proof.

5.3 Theorems

The current version of the standard theory library exports 450 theorems, con-
taining 64 defined constants and 6 defined type operators. For reasons of space
the theorems cannot all be shown here, but an HTML version of the base pack-
age can be viewed at the following URL:

http://opentheory.gilith.com/?pkg=base-1.0

The standard theory library comprises 139 packages: 102 of which are ba-
sic theory packages wrapping proof articles; 36 of which are higher-level theory
packages; and one is the base package. The left side of Table 1 shows the primi-
tive inference count of replaying all the proofs in the standard theory library, for
a total of 211,058 inferences. The cost of separating the standard theory library
into 102 basic theory packages is highlighted by the axiom count of 1,672, which
is increased whenever one basic theory uses a theorem proved by an imported
theory.

It is possible to compile the whole of the standard theory library into a
single proof article (with 965,433 commands), and then repeat the experiment
of replaying all of the proofs and counting the primitive inferences: the results

Primitive Inference Count

eqMp 55,209
subst 45,651
appThm 44,130
deductAntisym 28,625
refl 17,388
betaConv 8,035
absThm 7,765
assume 2,455
axiom 1,672
defineConst 119
defineTypeOp 9

Total 211,058

Primitive Inference Count

eqMp 32,386
subst 27,949
appThm 27,796
deductAntisym 17,300
refl 9,332
absThm 6,313
betaConv 3,646
assume 1,169
defineConst 85
defineTypeOp 7
axiom 3

Total 125,986

Table 1. The primitive inference count of replaying all the proofs in the standard
theory library, when split into theories (left) and compiled into a single article (right).

are shown on the right side of Table 1. The total number of primitive inferences
drops by 40%, and the axiom count is only three: one for each of the standard
axioms. It is also remarkable that the number of auxiliary defined type operators
and constants (used in proofs but that do not appear in any theorems) drops
from 55 and 3 to 21 and 1 (respectively). This provides some concrete data
quantifying the performance cost of splitting the standard theory library into
coherent hierarchical theory packages.

6 Related Work

Extracting proofs from LCF theorem provers is not new: Wong’s pioneering
Recording and checking HOL proofs in 1995 appears to be the first [35]. More
recently, Obua and Skalberg [29] instrumented HOL4 and HOL Light to export
theories in XML format that could be imported into the Isabelle/HOL theorem
prover. The present work differs from this line of proof recording work by its
focus on the theory as the central concept, independent of any particular theorem
prover implementation.

From this point of view, the most related work is the AWE project [5], which
builds on the explicit proof terms in Isabelle [4]. Though tied to one theorem
prover, it nevertheless focuses on the theory as the central concept, and has de-
veloped sophisticated mechanisms for theory interpretation based on rewriting
proof terms. The present work differs from AWE by being theorem prover inde-
pendent, and also by its technique of processing proofs one step at a time rather
than requiring the whole proof to be in memory, which may allow it to scale up
more effectively.

The HOL Zero project [1] has aims similar to OpenTheory of making proofs
portable between different implementations of the HOL family of theorem provers,
by creating a minimal theorem prover “for checking and/or consolidating proofs

created on other theorem provers”, “designed with trustworthiness as its top pri-
ority”. OpenTheory differs from HOL Zero by its focus on proofs that have been
reduced to the object format of primitive inferences, and the theory packaging
mechanisms that can be built on top of this starting point. HOL Zero com-
plements OpenTheory by encouraging portability at the earlier stage of proof
source files.

Many theorem provers implement a theory infrastructure that offers func-
tionality similar to the theory operations in the OpenTheory package format.
ProofPower has a sophisticated system for building and navigating a hierarchy
of theories which contain both logical data and information for tools such as
parsers, pretty printers and proof tools [23]. Theory interpretations are imple-
mented in the EVES [7], IMPS [9], PVS [31] and Specware [34] theorem provers.
Called locales in the Isabelle theorem prover [22], they are integrated with its
declarative proof language [3]. The present work differs from these efforts by
pursuing a theorem prover independent approach to theory combination and
interpretation.

Another approach to higher order logic theory operations is to extend the
logic so that theories can be directly represented with theorems [33, 17]. The goal
of the present work is to implement a theory infrastructure on top of the existing
logic, but extending the logic has the significant advantage of supporting theory
operations without replaying proofs.

7 Summary

In this paper we motivated the need for a standard library of higher order logic
theories to support large-scale logical theory development and increase portabil-
ity of theories between the HOL family of theorem provers.

The core contribution of this paper is the presentation of a theorem prover
independent standard theory library, represented as an OpenTheory package.
We identified the core theory set of the HOL family of theorem provers, and
described the process of instrumenting the HOL Light theorem prover to extract
a standardized version of its core theory development.

The OpenTheory package language is suitable to package proof articles ex-
tracted from HOL Light, and we showed how to combine these first into higher
level theory packages, and then into a single package representing the user in-
terface to the whole standard theory library. Finally, we profiled the axioms
and theorems of the standard theory library, and investigated the performance
cost of separating the standard theory library into coherent hierarchical theory
packages.

8 Future Work

The current version of the standard theory library is not fixed, and in fact is
expected to evolve as more theories are standardized between the HOL family of
theorem provers. One desirable goal would be keep later versions of the standard

theory library backwards compatible with earlier versions, which implies that we
should exercise caution when adding theorems, because they might be hard to
remove later.

The current version of the standard theory library does not make any use of
parametric theories containing assumptions about uninterpreted type operators
and constants, which users are expected to interpret to defined type operators
and constants in their proof context. The advantage of using parametric theories
is that proving a theorem once in a parametric theory makes it available ‘for
free’ in every context in which it is used. The use of parametric theories has
the potential to reduce the effort required to extend the standard theory library,
while giving users more tools to use in their theory developments.

The standard theory library is based on the simple version of higher order
logic implemented by the HOL family of theorem provers. There is a straightfor-
ward semantic embedding from this logic to the more complex versions of higher
order logic implemented by the Isabelle/HOL [27] and PVS [30] theorem provers,
making it technically possible to import OpenTheory packages into these sys-
tems. However, there is an interesting line of research in designing importers that
result in ‘natural-looking’ theories in the target system. Such an importer could
modify the theories as they were processed (similar to the de-tagging rewriting
described in Section 4.2) to use logical features of the target system such as
Isabelle/HOL type classes or PVS subtypes.

Acknowledgements

The OpenTheory project was initiated in 2004 as a result of discussions between
Rob Arthan and the author, and the work since then has been guided by feed-
back from many other people, including John Harrison, Rebekah Leslie, John
Matthews, Michael Norrish and Konrad Slind. This paper was greatly improved
by comments from Rob Arthan, Ramana Kumar, Lee Pike and the anonymous
referees.

References

1. Mark Adams. Introducing HOL Zero. In Komei Fukuda, Joris vander Hoeven,
Michael Joswig, and Nobuki Takayama, editors, Proceedings of the Third Interna-
tional Congress on Mathematical Software (ICMS 2010), volume 6327 of Lecture
Notes in Computer Science, pages 142–143. Springer, September 2010.

2. R. D. Arthan and R. B. Jones. Z in HOL in ProofPower. BCS FACS FACTS,
2005-1.

3. Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano Be-
rardi, Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and Pro-
grams: Third International Workshop, TYPES 2003, volume 3085 of Lecture Notes
in Computer Science, pages 34–50. Springer, May 2004.

4. Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher order
logic. In Mark Aagaard and John Harrison, editors, Theorem Proving in Higher
Order Logics, 13th International Conference: TPHOLs 2000, volume 1869 of Lec-
ture Notes in Computer Science, pages 38–52. Springer, August 2000.

5. Maksym Bortin, Einar Broch Johnsen, and Christoph Lüth. Structured formal
development in Isabelle. Nordic Journal of Computing, 13:1–20, 2006.

6. Duncan Coutts, Isaac Potoczny-Jones, and Don Stewart. Haskell: Batteries in-
cluded. In Andy Gill, editor, Haskell ’08: Proceedings of the first ACM SIGPLAN
symposium on Haskell, pages 125–126. ACM, September 2008.

7. D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink. EVES: An
overview. Technical Report CP-91-5402-43, ORA Corporation, 1991.

8. Eelco Dolstra and Andres Löh. NixOS: A purely functional Linux distribution. In
James Hook and Peter Thiemann, editors, Proceedings of the 13th ACM SIGPLAN
International Conference on Functional programming (ICFP 2008), pages 367–378.
ACM, September 2008.

9. William M. Farmer. Theory interpretation in simple type theory. In Jan Heering,
Karl Meinke, Bernhard Möller, and Tobias Nipkow, editors, Higher-Order Algebra,
Logic, and Term Rewriting, First International Workshop (HOA ’93), volume 816
of Lecture Notes in Computer Science, pages 96–123. Springer, 1994.

10. William M. Farmer. The seven virtues of simple type theory. Journal of Applied
Logic, 6:267–286, 2008.

11. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of Lecture
Notes in Computer Science. Springer, 1979.

12. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

13. Michael J. C. Gordon. Proof, Language, and Interaction: Essays in Honour of
Robin Milner, chapter 6. From LCF to HOL: A Short History. MIT Press, May
2000.

14. Thomas C. Hales. Introduction to the Flyspeck project. In Thierry Coquand, Henri
Lombardi, and Marie-Françoise Roy, editors, Mathematics, Algorithms, Proofs,
number 05021 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

15. John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and Albert
Camilleri, editors, Proceedings of the First International Conference on Formal
Methods in Computer-Aided Design (FMCAD ’96), volume 1166 of Lecture Notes
in Computer Science, pages 265–269. Springer, 1996.

16. John Harrison. Formalizing basic complex analysis. In R. Matuszewski and A. Za-
lewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 151–165. Univer-
sity of Bia lystok, 2007.

17. Peter V. Homeier. The HOL-Omega logic. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order
Logics, 22nd International Conference (TPHOLs 2009), volume 5674 of Lecture
Notes in Computer Science, pages 244–259. Springer, August 2009.

18. Joe Hurd. A formal approach to probabilistic termination. In Vı́ctor A. Carreño,
César A. Muñoz, and Sofiène Tahar, editors, 15th International Conference on
Theorem Proving in Higher Order Logics: TPHOLs 2002, volume 2410 of Lecture
Notes in Computer Science, pages 230–245. Springer, August 2002.

19. Joe Hurd. OpenTheory: Package management for higher order logic theories. In
Gabriel Dos Reis and Laurent Théry, editors, PLMMS ’09: Proceedings of the ACM
SIGSAM 2009 International Workshop on Programming Languages for Mechanized
Mathematics Systems, pages 31–37. ACM, August 2009.

20. Joe Hurd. Composable packages for higher order logic theories. In M. Aderhold,
S. Autexier, and H. Mantel, editors, Proceedings of the 6th International Verifica-
tion Workshop (VERIFY 2010), July 2010.

21. Joe Hurd. OpenTheory Article Format, August 2010. Available for download at
http://gilith.com/research/opentheory/article.html.

22. F. Kammüller. Modular reasoning in Isabelle. In David A. McAllester, editor,
Proceedings of the 17th International Conference on Automated Deduction (CADE-
17), volume 1831 of Lecture Notes in Computer Science. Springer, June 2000.

23. D. J. King and R. D. Arthan. Development of practical verification tools. ICL
Systems Journal, 11(1), May 1996.

24. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification
of an OS kernel. In Jeanna Neefe Matthews and Thomas E. Anderson, editors,
Proceedings of the 22nd ACM Symposium on Operating Systems Principles, pages
207–220. ACM, October 2009.

25. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In J. Gregory Morrisett and Simon L. Peyton Jones,
editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2006), pages 42–54. ACM, January 2006.

26. P. Naur and B. Randell, editors. Software Engineering. Scientific Affairs Division,
NATO, October 1968.

27. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

28. Michael Norrish and Konrad Slind. A thread of HOL development. The Computer
Journal, 41(1):37–45, 2002.

29. Steven Obua and Sebastian Skalberg. Importing HOL into Isabelle/HOL. In Ulrich
Furbach and Natarajan Shankar, editors, Automated Reasoning, Third Interna-
tional Joint Conference (IJCAR 2006), volume 4130 of Lecture Notes in Computer
Science, pages 298–302. Springer, August 2006.

30. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Sys-
tem Guide. Computer Science Laboratory, SRI International, Menlo Park, CA,
September 1999.

31. Sam Owre and N. Shankar. Theory interpretations in PVS. Technical Report
SRI-CSL-01-01, SRI International, April 2001.

32. Florian Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs
University Bremen, May 2008.

33. Norbert Völker. HOL2P - A system of classical higher order logic with second order
polymorphism. In Klaus Schneider and Jens Brandt, editors, 20th International
Conference on Theorem Proving in Higher Order Logics: TPHOLs 2007, volume
4732 of Lecture Notes in Computer Science, pages 334–351. Springer, September
2007.

34. Stephen Westfold. Integrating Isabelle/HOL with Specware. In Klaus Schnei-
der and Jens Brandt, editors, Theorem Proving in Higher Order Logics: Emerging
Trends Proceedings, number 364/07 in Department of Computer Science, Univer-
sity of Kaiserslautern Technical Reports, August 2007.

35. W. Wong. Recording and checking HOL proofs. In E. T. Schubert, P. J. Wind-
ley, and J. Alves-Foss, editors, Proceedings of the 8th International Workshop on
Higher Order Logic Theorem Proving and Its Applications (HOL ’95), volume 971
of Lecture Notes in Computer Science, pages 353–368. Springer, September 1995.

