Integrating Gandalf and HOL

Joe Hurd

University of Cambridge TPHOLs

17 September 1999

- 1. Introduction
- 2. How it works
- 3. Results
- 4. Conclusion

Introduction

HOL

- Higher-order logic
- Emphasis on consistency
- Highly general meta-language

Gandalf

- First-order classical logic with equality
- Emphasis on speed
- Highly specific tool

Aim to get the best of both worlds.

Introduction

What's new here?

Two significant novelties in this work:

- The use of a completely separate 'off-the-shelf' theorem-prover, treating it as a black box.
- The systematic use of a generic plug-in interface.

Introduction

Prosper overview

Joe Hurd

TPHOLs, 17 September 1999

An example goal

Let's use GANDALF_TAC to prove the goal

 $\forall ab. \ \exists x. \ Pa \lor Pb \Rightarrow Px$

Initial primitive steps

In the first stage of processing we assume the negation of the goal:

$$\{\neg(\forall ab. \ \exists x. \ Pa \lor Pb \Rightarrow Px)\}$$
$$\vdash \neg(\forall ab. \ \exists x. \ Pa \lor Pb \Rightarrow Px)$$

Conversions

We now use standard conversions to change the conclusion to CNF:

$$\{\neg(\forall ab. \ \exists x. \ Pa \lor Pb \Rightarrow Px)\}$$
$$\vdash \exists ab. \ \forall x'. \ \neg(Px') \land (Pa \lor Pb)$$

Printing

Next we print the formula in a format acceptable to Gandalf:

```
%-----%
% hol -> gandalf formula %
%------%
set(auto).
assign(max_seconds,300).
assign(print_level,30).

list(sos).

-c10(x1).

c10(c5) |
c10(c6).
end_of_list.
```

Calling Gandalf (part 1)

We now use the Prosper plug-in interface to call Gandalf.

Calling Gandalf (part 2)

And here is the string we receive from Gandalf:

```
Gandalf v. c-1.0c starting to prove: gandalf.26884
strategies selected:
((binary 30 #t) (binary-unit 90 #f) (hyper 30 #f)
(binary-order 15 #f) (binary-nameorder 60 #f 1 3)
(binary-nameorder 75 #f))

********* EMPTY CLAUSE DERIVED ********

timer checkpoints: c(2,0,28,2,30,28)

1 [] c10(c5) | c10(c6).
2 [] -c10(x).
3 [binary,1,2,binary_s,2] contradiction.
```

1.794 1.911

Parsing

We parse the output string into special-purpose datatypes:

```
[(1, (Axiom(), []),
    [(true, Branch(Leaf "c10", Leaf "c5")),
        (true, Branch(Leaf "c10", Leaf "c6"))]),
    (2, (Axiom(), []),
        [(false, Branch(Leaf "c10", Leaf "x"))]),
        (3, (Binary((1, 1), (2, 1)), [Binary_s(2, 1)]),
        [])]
: (int
    * (Proofstep * Clausesimp list)
    * (bool * Tree) list) list
```

Note: Variable names can arbitrarily change!

Translating

We now translate the Gandalf proof into a HOL proof, using a Prolog-style backtracking algorithm to match each proof line.

Here is the theorem we end up with:

$$\{\neg(\forall ab.\ \exists x.\ Pa\lor Pb\Rightarrow Px)\}\vdash\bot$$

Final primitive steps

Now we need only use the contradiction axiom to establish our original goal:

$$\vdash \forall ab. \ \exists x. \ Pa \lor Pb \Rightarrow Px$$

Results

Performance (part 1)

Goal	MESON_TAC		GANDALF_TAC		
Non-equality					
T	0.027	31	0.034	32	(-)
$P \vee \neg P$	0.075	72	2.003	108	(0)
P50	0.159	243	1.638	441	(0)
Agatha	0.438	872	3.916	1891	(0)
PRV006_1	1.064	1501	41.044	8097	(109)
GRP031_2	1.267	713	8.083	3699	(251)
COL001_2	2.150	847	39.240	2620	(0)
LOS	5.705	917	5.110	2565	(0)
NUM021_1	7.535	1246	17.210	4352	(0)
CAT018_1	12.226	2630	61.585	13477	(0)
CAT005_1	63.849	2609	66.200	13371	(0)
Equality					
x = x	0.090	54	0.041	35	(-)
P48	0.394	636	2.707	495	(0)
PRV006_1	0.648	1053	13.558	4015	(0)
NUM001_1	0.768	876	7.032	3012	(0)
P52	1.157	1122	_	_	(-)
GRP031 _ 2	1.377	757	7.946	3699	(251)
GRP037 _ 3	3.402	1466	26.844	8242	(0)
CAT018_1	7.646	1809	28.560	8611	(0)
NUM021_1	7.737	1026	10.765	3423	(0)
CAT005_1	30.514	1784	29.490	8505	(0)
COL001_2	56.948	700	4.930	1273	(0)
Agatha	2003.00	1313	12.626	3409	(0)

Results

Performance (part 2)

	Conv.	Proof	Trans.	Total
GANDALF_TAC				
Non-equality	1.67	5.55	2.14	11.57
Equality	4.20	5.27	7.19	17.82
Combined	2.51	5.42	3.64	13.99
MESON_TAC				
Non-equality	0.26	0.36	0.06	0.90
Equality	0.43	1.27	0.09	2.61
Combined	0.33	0.66	0.07	1.50

Results

Gandalf the plug-in

GANDALF_TAC has contributed to the development of the plug-in concept.

- Evidence that plug-ins can really work.
- Plug-ins can happily coexist with the LCF logical core, and don't have to be oracles.
- Useful to test the plug-in interface.
- Perhaps could serve as a template to potential plug-in authors (at least for this class of black-box plug-ins).

Conclusions

- Need for good standards (e.g., formula formats, proof formats, APIs such as the plug-in interface).
- Good tool for hard problems, and still scope for optimization (e.g., altering Gandalf to output more explicit proofs, lifting search/conversion outside the logic).
- Step towards distributed theorem-proving (easy to farm out problem to multiple Gandalf servers, and accept first proof).
- Would be a lot more useful if proofs could be recorded, so that proof search is not necessary every time the theory is built.