Random Binary Search Trees
A Purely Functional Data Structure

Joe Hurd

Galois, Inc.
joe@gilith.com

Portland Functional Programming Study Group
Monday 13 September 2010

Joe Hurd Random Binary Search Trees 1/9



Introduction
Purely Functional Data Structures

Purely functional data structures support two operations:

© Creating a new object and initializing the data.
@ Reading the data of an object.

o Unsupported: Mutating the data in an object.

e Simulate mutation by creating a new object that reuses the
structure of the old object.

(]

Benefits:

e Easy to reason about ~~ aggressive compiler optimizations.
o No thread mutation ~» no concurrency race conditions.

@ Drawbacks:
o Allocation instead of mutation ~~ worse performance.

Joe Hurd Random Binary Search Trees



Introduction

Heaps

A purely functional data structure for
finite sets.
@ Each node is either a branch or a
leaf.
@ A leaf is empty.

@ A branch contains a key, a left
subtree and a right subtree. 0 0

@ The branch key must be greater
than all the keys in its subtrees.
Supports efficient access to the maxi- Q

mum element.

Joe Hurd Random Binary Search Trees



Binary Search Trees

Binary Search Trees

Another purely functional data struc-
ture for finite sets.

@ Each node is either a branch or a @

leaf.

@ A leaf is empty.
@ A branch contains a key, a left 0
subtree and a right subtree.
@ The branch key must be greater Q
than all the keys in the left subtree.
@ The branch key must be less than @ Q
all the keys in the right subtree.
o} o 0O Q

Supports efficient searching for ele-

Q

ments.

Joe Hurd Random Binary Search Trees 4/9



Binary Search Trees
Operating on Binary Search Trees

Must maintain the binary search O
tree invariants when implementing
set operations:

@ adding/deleting elements
@ union
@ intersection

@ set difference

Joe Hurd Random Binary Search Trees 5/9



Balancing Strategies

Unbalanced Binary Search Trees are Inefficient

Joe Hurd Random Binary Search Trees 6/9



Balancing Strategies
Balancing Strategies

@ In a Nutshell: Perform additional tree rotations to avoid
losing balance.
o AVL trees [1962]
o Red/black trees [1972]
o Splay trees [1985]

o But wait! Most binary search trees are well-balanced.

o Idea: Given a set of keys, choose a binary search tree
containing these keys at random.

e This will result in good expected performance, independent of
the input.

Joe Hurd Random Binary Search Trees 7/9



Balancing Strategies

Implementing Random Binary Search Trees

@ Given a set of keys with @
associated priorities, there is
a unique binary search tree
containing these keys that is
also a heap of the priorities. @ @
@ Assigning priorities to keys
uniformly at random will o O
result in a random binary

search tree. @ @

@ This idea was told to me by
Alistair Turnbull in 2006. Q Q Q Q

Joe Hurd Random Binary Search Trees 8/9



Summary

@ Random binary search trees are used to support heavy use of
finite sets and maps in formal methods infrastructure.

@ The Metis theorem prover.
@ The OpenTheory proof archive.

o I'd like to know how their performance compares with other
purely functional data structures for finite sets and maps.

e Looking for volunteers to carry out experiments. . .
@ The Standard ML code is available under an MIT license from
http://src.gilith.com/basic.html

Joe Hurd Random Binary Search Trees 9/9


http://src.gilith.com/basic.html

	Introduction
	Binary Search Trees
	Balancing Strategies
	Summary

