
An LCF-Style Interface between HOL
and First-Order Logic

Joe Hurd
joe.hurd@cl.cam.ac.uk

University of Cambridge

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.1/9

Introduction

• Many HOL goals can be proved by first-order calculi.

• Can tackle them by programming versions of the calculi
that work directly on HOL terms.

• But types (and λ’s) add complications;
• and then it’s not easy to change the way HOL terms

are mapped to first-order logic.

• Would like to program a version of the calculi that works
on standard first-order terms, and have someone else
worry about the mapping to HOL terms.

• Then coding is simpler and the mapping is flexible;
• but how can we keep track of first-order proofs, and

automatically translate them to HOL?

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.2/9

First-order Logical Kernel

Use the ML type system to create an LCF-style logical
kernel for clausal first-order logic:

signature Kernel =

sig

(* An ABSTRACT type for theorems *)

eqtype thm

(* Destruction of theorems is fine *)

val dest_thm : thm → formula list × proof

(* But creation is only allowed by these primitive rules *)

val AXIOM : formula list → thm

val ASSUME : formula → thm

val INST : subst → thm → thm

val FACTOR : thm → thm

val RESOLVE : formula → thm → thm → thm

end

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.3/9

Making Mappings Modular

The logical kernel keeps track of proofs, and allows the
HOL mapping to first-order logic to be modular:

signature Mapping =

sig

(* Mapping HOL goals to first-order logic *)

val map_goal : HOL.term → FOL.formula list

(* Translating first-order logic proofs to HOL *)

type Axiom_map = FOL.formula list → HOL.thm

val trans_proof : Axiom_map → Kernel.thm → HOL.thm

end

Implementations of Mapping simply provide HOL versions of
the primitive inference steps in the logical kernel, and then
all first-order theorems can be translated to HOL.

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.4/9

Type Information?

• It is not necessary to include type information in the
mapping from HOL terms to first-order terms/formulas.

• Principal types can be inferred when translating
first-order terms back to HOL.

• This wouldn’t be the case if the type system was
undecidable (e.g., the PVS type system).

• But for various reasons the untyped mapping
occasionally fails.

• We’ll see examples of this later.

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.5/9

Four Mappings

We have implemented four mappings from HOL to
first-order logic.

Their effect is illustrated on the HOL goal n < n + 1:

Mapping First-order formula
first-order, untyped <(n, +(n, 1))

first-order, typed <(n : N, +(n : N, 1 : N) : N)

higher-order, untyped B(@(@(<, n), @(@(+, n), 1)))

higher-order, typed
B(@(@(< : N → N → B, n : N) : N → B,

@(@(+ : N → N → N, n : N) : N → N, 1 : N) : N

) : B)

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.6/9

Mapping Efficiency

• We coded up ML versions of simple first-order calculi.

• Model elimination; resolution; the delta preprocessor.
• Can be used with any mapping to prove HOL goals.
• This proof tool is released with HOL4.

• Effect of the mapping on the time taken to prove a HOL
version of Łoś’s ‘nonobvious’ problem:

Mapping untyped typed
first-order 3.50s 4.89s
higher-order 3.76s 17.73s

• These timing are typical, although 2% of the time
higher-order, typed does beat first-order, untyped.

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.7/9

Mapping Coverage

higher-order
√

first-order ×

` ∀ f, s, a, b. (∀x. f(x) = a) ∧ b ∈ image f s ⇒ (a = b)

(f has different arities)

` ∃x. x (x is a predicate variable)

` ∃ f. ∀x. f(x) = x (f is a function variable)

typed
√

untyped ×

` length ([] : N
∗) = 0 ∧ length ([] : R

∗) = 0 ⇒
length ([] : R

∗) = 0 (indistinguishable terms)

` ∀x. S K x = I (extensionality applied too many times)

` ∃ f. ∀x. f(x) = x (f chosen to be (∧)>)

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.8/9

Conclusions

• It’s possible to modularize the mapping from HOL to
first-order logic.

• This allows simpler implementation of proof tools;
• and different mappings for different application

areas.

• The untyped mapping shows that including type
information is not necessary, but often advisable.

• The higher-order mapping gives surprisingly large
coverage on HOL goals, but is rather slow.

• Future Work: Use the mappings to create a flexible
interface to ‘industrial strength’ first-order provers.

An LCF-Style Interface between HOL and First-Order Logic – Joe Hurd – p.9/9

	Introduction
	First-order Logical Kernel
	Making Mappings Modular
	Type Information?
	Four Mappings
	Mapping Efficiency
	Mapping Coverage
	Conclusions

