The Design of Gomi

Joe Hurd

joe@gilith.com

2 July 2008

Abstract

This paper presents the design of Gomi, a go playing program.

1 Introduction

This paper presents the design of Gomi,¹ a go playing program.

1.1 Notation

- B denotes the type of booleans {true, false}.
- Probabilities p.
- Probability distributions \overline{x} over elements of type x.
- Points v on the board.
- Board positions ρ , including final positions τ .
- Legal moves m.
- Patterns χ : functions from ρ to \mathbb{B} .
- Formulas ϕ : functions from τ to \mathbb{B} .
- Pattern databases Π : sets of $(\chi, \phi, \overline{p})$.
- Strategies σ : functions from ρ to \overline{m} .

¹Gomi is available for download from http://www.gilith.com/software/gomi

2 Strategy

The core algorithm of gomi evaluates a position by playing many sample games with strategy σ .

Strategy σ is the following method for selecting a move from a position ρ :

- 1. For each legal move m, there is a probability p_m that the position $move(\rho, m)$ is winning if both players follow strategy σ .
- 2. Estimate the probability distribution of p_m in [0,1] from a pattern database.
- 3. Use these estimates to calculate the probability q_m that p_m is the maximum among all legal moves.
- 4. Pick a move m by sampling from probability distribution q_m .

Step 2 is the difficult one, and makes the effectiveness of strategy σ dependent on the quality of the pattern database.

3 Formulas

The key theoretical concept is

$$\mathbb{P}(\phi \mid \rho) = p$$

which means: if both players follow strategy σ starting from position ρ , the final position will satisfy formula ϕ with probability p^2 . This probability is well-defined for every position ρ and formula ϕ .

The most important property of the final position is whether it has satisfied the formula BlackWins, which is decided by the formulas is BlackTerritory(v)and isSeki(v) for all the points v on the board.

²The formula ϕ having probability p can be generalized to a probability distribution over any property of final positions, such as number of seki points, but formulas are complicated enough for now.

4 Pattern Database

A pattern χ is an abbreviation for all positions that match χ , weighted by the frequency that a position appears when both players follow strategy σ . When we meet a position ρ matching χ , we want to estimate the probability $\mathbb{P}(\phi \mid \rho)$. Therefore, the pattern database stores entries of the form

$$(\chi, \phi, d)$$

where d is a probability distribution over [0, 1] that estimates the random variable

 $\mathbb{P}(\phi \mid \rho) \mid \rho \text{ matches } \chi \text{ .}$

A useful (χ, ϕ, d) entry in the pattern database is one where χ is matched often, d is spiky, and ϕ greatly reduces the entropy of BlackWins.

This raises two interesting questions: how do we find useful χ and ϕ pairs; and given χ and ϕ , how to calculate d? Take second question first.

4.1 Estimating Probabilities

Special case: if χ only matches one position, then we can use the frequency of ϕ being satisfied to estimate p. If χ was matched n times, and ϕ was satisfied on r of those occasions, then d can be the beta distribution with parameters $\alpha := r + 1$ and $\beta := n + 1 - r$. Abbreviate this as $B_{r,n}$.

In general, we must consider all possible splits of the formula frequency. For example, if the pattern χ being matched led to the formula ϕ being satisfied with probability 1/2, then this might mean either: that all positions that match χ satisfy ϕ with probability 1/2; or half the positions that match χ satisfy ϕ with probability 1, and the other half satisfy ϕ with probability 0.

Let

$$q = \mathbb{P}(\phi \mid \chi) ,$$

then a conservative estimation of the probability

$$\mathbb{P}(\phi \mid \rho) \mid \rho \text{ matches } \chi$$

$$\begin{array}{lll} d_q(p) &=& \mbox{The maximum proportion of positions that can have probability } p \\ &=& \mbox{max}\{x \mid \exists p' \in [0,1]. \ p \ast x + p' \ast (1-x) = q\} \\ &=& \mbox{max}\{x \mid \exists p' \in [0,1]. \ x \ast (p-p') + p' = q\} \\ &=& \mbox{if } p > q \ \mbox{then } q/p \ \mbox{else } (q-1)/(p-1) \\ &=& \mbox{if } p > q \ \mbox{then } q/p \ \mbox{else } (1-q)/(1-p) \end{array}$$

The probability q is unknown, but we can estimate it using the beta distribution $B_{r,n}$, to give the following estimate:

$$d(p) = \int_{q \in B_{r,n}} d_q(p) \ .$$

This is (expected to be) pretty spiky when q is close to 0 or 1, but is not much help otherwise. To further refine the estimation, we can keep track of which patterns are reachable in one move from χ .

Acknowledgements

Alistair Turnbull read an early draft of this design document.

is