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Abstract

We present a generic digit serial method (DSM) to compute the digits of a real
number V . Bounds on these digits, and on the errors in the associated estimates of
V formed from these digits, are derived. To illustrate our results, we derive such
bounds for a parameterized family of high-radix algorithms for division and square
root. These bounds enable a DSM designer to determine, for example, whether a
given choice of parameters allows rapid formation and rounding of its approxima-
tion to V . All our claims are mechanically verified using the HOL-Light theorem
prover, and are included in the appendix with commentary.

Keywords Digit serial method, digit recurrence method, on-the-fly technique, high-
radix, division, square root, digit bounds, error bounds, formal verification, HOL
Light.

1 Introduction
Let V be a real number. A digit serial method (DSM) is an algorithm that determines
the digits of V serially, starting with the leading digit. A DSM begins by initializing an
accumulator to zero and, as each digit is determined, that digit is aligned and added to
the accumulator. Successive values of this accumulator form a sequence of estimates
of V .

The primary contribution of this paper is a generic DSM analysis method for deter-
mining bounds on the magnitudes of the digits, as well as bounds on the error associ-
ated with the estimates of V . These bounds allow a designer to determine the required
bit-width of signals representing these digits and errors, and to determine when the es-
timates of V can be efficiently formed and rounded by, say, on-the-fly techniques [7, 8].
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The major results presented here are the Proxy Theorem 5.1 and its Corollary 5.3
with illustrations of their application to division and square root algorithms. These
results have been checked/formalized using the HOL Light [12] theorem prover; a
short extract from the formalization is presented in the appendix.

The analysis of low-radix DSM for division and square root is well-understood [9].
Analyses of specific high-radix DSM for these operations are described in [3, 11, 15].
An additional contribution of this paper is the application of our generic DSM analysis
to a parameterized family of high-radix DSM algorithms for division and square root.

2 Scaling
The DSM considered here assume that V ∈ (0, 1), so the leading digit of V is known
to be the first fraction digit. For this assumption to be true, it may be necessary to scale
the problem. Scaling is a three step process: (1) reduce the general problem to simpler
problem by scaling, (2) determine the result of the simpler problem, and (3) reconstruct
the general result from the result of the simpler problem.

For completeness, we briefly describe well-known scalings for division and square
root of positive normalized finite precision binary floating-point numbers. Here, a
positive normalized finite precision binary floating-point number is a real value of the
form s2e composed of a normalized significand s = 1 + f/2k, an integer exponent e,
and a fraction f/2k where f is a non-negative integer less than 2k for some positive
integer k.

Scaling for division. Consider the computation of the quotient Q ≡ (sx2ex)/(sy2ey )
where sx and sy are normalized finite precision binary significands, and ex and ey are
integers. Scaling reduces the computation ofQ to the computation of a related quotient
V ∈ (0, 1), a DSM is used to compute V , and Q is reconstructed from the value of V .
One possible scaling uses the reduction

V ≡ X/Y where (X,Y ) ≡ (sx/2, sy),

so X ∈ [1/2, 1), Y ∈ [1, 2), and V ∈ (1/4, 1). After the DSM determines V , the final
result is reconstructed as follows:

Q = V 2ex−ey+1.

Scaling for square-root. Consider the computation of the square root R ≡
√
sx2ex

where sx is a normalized finite precision binary significand and ex is an integer. Scaling
reduces the computation of R to the computation of a related square root V ∈ (0, 1), a
DSM is used to compute V , and R is reconstructed from the value of V . One possible
scaling uses the reduction

V ≡
√
X where X ≡

{
sx/4 even ex
sx/2 odd ex

,
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so X ∈ [1/4, 1) and V ∈ [1/2, 1). After the DSM determines V , the final result is
reconstructed as follows:

R = V

{
2(ex+2)/2 even ex
2(ex+1)/2 odd ex

.

For both division and square root, scaling has reduced the original problem to the
computation of a value V ∈ (0, 1), combined with integer additions that determine the
associated exponent.

3 Basic DSM
Consider the following mixed-radix representation of a real number V :

V =
1

β1

(
v1 +

1

β2

(
v2 +

1

β3

(
v3 + · · ·

)))
=

v1
B1

+
v2
B2

+
v3
B3

+ · · ·

where1 ∀i ∈ N>0 : Bi ≡ β1β2 . . . βi. We always assume that {vi}∞i=1 is a sequence
of integers (called digits), and that {βi}∞i=1 is a sequence of integers (called radices or
bases), each 2 or greater. If B0 ≡ 1, then ∀i ∈ N : Bi+1 = βi+1Bi.

A DSM accumulates the terms of the series for V serially. Start with an accumula-
tor initialized to 0. The terms involving the digits v1, v2, v3, . . . are then consecutively
added to the accumulator. The values of the accumulator after each digit is added
defines the head sequence {Hi}∞i=0 where:

H0 ≡ 0, ∀i ∈ N>0 : Hi ≡
v1
B1

+
v2
B2

+ · · ·+ vi
Bi
.

Associated with each head Hi is the tail Ti defined as:

∀i ∈ N : Ti ≡ Bi (V −Hi) = Bi

(
vi+1

Bi+1
+
vi+2

Bi+2
+ · · ·

)
.

Intuitively, Hi is the approximation to the target result V that has been computed after
step i, while Ti is the error in this approximation normalized by Bi; here Ti/Bi is
analogous to a floating-point value s2e with Ti ∼ s and 1/Bi ∼ 2e. This definition of
the tails provides the invariant ∀i ∈ N : V = Hi + Ti/Bi.

We can summarize the above as follows:

B0 = 1, ∀i ∈ N : Bi+1 = βi+1Bi,

H0 = 0, ∀i ∈ N : Hi+1 = Hi + vi+1/Bi+1, and
T0 = V, ∀i ∈ N : Ti+1 = βi+1Ti − vi+1.

1Notation: Reals R, non-negative reals R≥0, positive reals R>0, integers Z, natural numbers N =
{0, 1, . . .} , counting numbers N>0 = {1, 2, . . .}.
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Digit selection. In the recurrence

∀i ∈ N : βi+1Ti = vi+1 + Ti+1

note that
Ti+1 =

vi+2

βi+2
+

vi+3

βi+2βi+3
+ · · ·

As we shall see in Sect. 4, if the digits satisfy ∀k ≥ 2 : |vk| < βk, a simple algorithm
can be used to accumulate the digits. If this condition holds then |Ti+1|, the distance
between βi+1Ti and vi+1, is at most 1. Consequently, a plausible choice for vi+1 is an
integer near βi+1Ti.

We therefore introduce digit selection functions ∀i ∈ N>0 : DSFi : R → Z that
“round” their real argument to a nearby integer, so ∀i ∈ N : vi+1 ≡ DSFi+1(βi+1Ti).
Paired with any digit selection function DSF is the complementary digit selection func-
tion coDSF : R→ R defined as

∀z ∈ R : coDSF(z) ≡ z − DSF(z).

From the partition

βi+1Ti = DSFi+1(βi+1Ti) + coDSFi+1(βi+1Ti)

of βi+1Ti, we recognize that Ti+1 = coDSFi+1(βi+1Ti).
Note that |coDSF(z)| is the distance between z and DSF(z), or equivalently the

error in approximating z by DSF(z). It makes sense, then, to classify digit selection
functions by the maximum value of |coDSF(z)| for all z.

Definition 3.1. (Round to Nearby Integer) For Ω ∈ R, RNI(Ω) is the collection of all
digit selection functions DSF : R→ Z such that ∀z ∈ R : |coDSF(z)| ≤ Ω.

We argue that RNI(Ω) = ∅ when Ω < 1/2. For suppose RNI(Ω) is nonempty and
choose DSF ∈ RNI(Ω). When z = n+1/2 for some integer n, DSF(z) is an integer in
the interval [z − Ω, z + Ω]. But that is impossible because there are no integers in this
interval. Therefore, Ω < 1/2 implies RNI(Ω) = ∅. For this reason we always assume
that Ω ≥ 1/2.

When DSF ∈ RNI(Ω) with 1/2 ≤ Ω < 1, DSF(z) belongs to the interval [z −
Ω, z+Ω], whose length 2Ω is in the interval [1, 2). There is always one, and sometimes
two, integers in this interval, and DSF(z) must be one of these integers.

Theorem 3.2. If v ≡ DSF(z) where DSF ∈ RNI(Ω), then |v| ≤ b|z|+ Ωc.

Proof. Since ∀x : |coDSF(x)| ≤ Ω and v = DSF(z), applying the triangle inequality
yields

|v| = |DSF(z)| = |z − coDSF(z)| ≤ |z|+ Ω.

The result follows by applying the floor function to the inequality and using the fact
that v is an integer.
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Algorithm 1 Basic DSM that computes {(Bi, Hi, Ti)}∞i=0 for V ∈ R where ∀i ∈
N>0 : (DSFi ∈ RNI(Ωi)) ∧ (βi ≥ 2).

procedure DSM BASIC(V )
(B0, H0, T0) := (1, 0, V )
for i := 0, 1, 2, . . . do
{Invariant: V = Hi + Ti/Bi}
vi+1 := DSFi+1(βi+1Ti)
Bi+1 := βi+1Bi
Hi+1 := Hi + vi+1/Bi+1

Ti+1 := βi+1Ti − vi+1

end for
end procedure

Algorithm 1 is the result of combining the information presented above.2 For this
algorithm, bounds on the absolute error |Ti|/Bi in the estimate Hi of V , and on the
digit vi, are easy to derive. We know that

|T0| = V and ∀i ∈ N>0 : |Ti| ≤ Ωi

because ∀i ∈ N>0 : Ti = coDSFi(βiTi−1) where DSFi ∈ RNI(Ωi), and so applying
Theorem 3.2 yields the digit bounds

∀i ∈ N>0 : |vi| ≤

{
bβ1V + Ω1c if i = 1

bβiΩi−1 + Ωic if i > 1
.

When the sequence {Ωi}∞i=1 is bounded, so too is the tail sequence {Ti}∞i=0. The
following result proves that the head sequence converges to V if the tail sequence is
bounded.

Theorem 3.3. Let V and {βi}∞i=1 be given as described in Algorithm 1. If the sequence
{Ti}∞i=0 is bounded, then the sequence {Hi}∞i=0 converges to V .

Proof. Suppose the sequence {Ti}∞i=0 is bounded, i.e., ∀i ∈ N : |Ti| ≤ Θ for some
constant Θ. Because ∀i ∈ N : Bi ≥ 2i, then |Ti|/Bi ≤ Θ/2i and therefore
limi→∞ Ti/Bi = 0. Now Hi = V − Ti/Bi, and so

lim
i→∞

Hi = lim
i→∞

(V − Ti/Bi)

= lim
i→∞

V − lim
i→∞

Ti/Bi = V.

4 On-the-fly Technique
When the on-the-fly technique applies, it offers an efficient way to accumulate the
(integer) digits generated by a DSM. The binary on-the-fly technique can be described

2See the description of radix-conversion in [14].
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βiAi−1 Ai−1 0 0 0 0

vi s s s s v v v v

Sum when s = 0 Ai−1 v v v v

Sum when s = 1 Ai−1 − 1 v v v v

Figure 1: 1-bit overlap; βiAi−1 + vi when µi = 4 and s ≡ signbit(vi).

as follows. We assume integers are represented using two’s complement notation, and
that ∀i ∈ N>0 : βi ≡ 2µi where each µi ∈ N>0.

First, no accumulation is needed to form H1 = v1, nor is there any restriction
placed on the magnitude of v1. Next, for i ≥ 2, consider how the digit vi is accumulated
into Hi−1 to form Hi:

Hi ≡ Hi−1 +
vi
Bi
.

Adding vi/Bi to Hi−1 creates a carry chain whose length can be nearly the bit-width
of Hi−1. The goal of the on-the-fly technique is to eliminate this addition and its
associated carry chain.

The simplest form of the on-the-fly technique assumes that ∀i ≥ 2 : |vi| < βi, so
both vi and vi−1 have (µi+1)-bit two’s complement representations. For each i ≥ 2,

BiHi = BiHi−1 + vi = βiBi−1Hi−1 + vi

and so
Ai = βiAi−1 + vi

where Ai ≡ BiHi is the accumulated value of all of the digits from v1 through vi,
inclusively. Consider Figure 1 which illustrates the alignment of βiAi−1 and the sign-
extended form of vi when µi = 4; note the 1 bit overlap between the leading (sign) bit
of vi and the trailing bit of Ai−1. When interpreted as a two’s complement integer, the
value of the bits of the sign-extended form of vi that overlap Ai−1 is either −1 or 0.
From this observation we draw the following conclusions:
• when vi ∈ N: s = 0 and Ai is formed by concatenating the bits of Ai−1 and the
µi trailing bits of vi, and

• when vi < 0: s = 1 and Ai is formed by concatenating the bits of Ai−1−1 with
the µi trailing bits of vi.

Consequently, if Ai−1 and A′i−1 ≡ Ai−1 − 1 are given, then Ai can be formed by
appending the µi trailing bits of vi to a selection of either Ai−1 or A′i−1. An analogous
argument applies to the formation of A′i ≡ Ai − 1 because

A′i ≡ Ai − 1 = βiAi−1 + vi − 1 = βiAi−1 + wi

where we recall that wi ≡ vi − 1 also has a (µi + 1)-bit two’s complement representa-
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βiAi−1 Ai−1 0 0 0 0

vi s s s v v v v v

Figure 2: 2-bit overlap; βiAi−1 + vi when µi = 4 and s ≡ signbit(vi).

tion. In summary,

Ai =

{
concatenate(Ai−1, Tµi

(vi)) if vi ∈ N
concatenate(A′i−1, Tµi

(vi)) if vi < 0
, and

A′i =

{
concatenate(Ai−1, Tµi

(wi)) if wi ∈ N
concatenate(A′i−1, Tµi

(wi)) if wi < 0
.

where Tµ(z) consist of the trailing µ bits of the two’s complement representation of
the integer z.

This argument can be generalized in several ways. Consider, for example, the
case where the digits cover the wider range ∀i ≥ 2 : |vi| < 2βi − 1. In this case,
because (µi+2)-bit two’s complement integers range from−2βi to 2βi−1 inclusively,
each of the integers {vi − 2, vi − 1, vi, vi + 1} has a (µi + 2)-bit two’s complement
representation. Figure 2 illustrates the addition of one of these four integers to βiAi−1;
note the 2-bit overlap between that integer and βiAi−1. The integer described by the
bits in the overlap of the sign-extended form of the integer and βiAi−1 ranges from−2
to 1, inclusively. Therefore, because

Ai + k = βiAi−1 + (vi + k) for k ∈ {−2,−1, 0, 1}

we can form any one of the values {Ai − 2, Ai − 1, Ai, Ai + 1} by adding the cor-
responding integer {vi − 2, vi − 1, vi, vi + 1} to βiAi−1. For example, to form
Ai − 2 add zi ≡ vi − 2 to βiAi−1. To perform this addition use the 2 leading
bits of the (µi + 2)-bit two’s complement representation of zi to select to which of
{Ai−1 − 2, Ai−1 − 1, Ai−1, Ai−1 + 1} the trailing µi-bits of zi are appended.

5 DSM Using a Proxy
Algorithm 1 is not effective for several reasons.

First, the value of V is used to initialize Ti. That’s acceptable for recoding, where
the algorithm converts the value of V in one form (say, binary) into another form (say,
decimal). It’s also acceptable in an analysis of the algorithm. It is not acceptable when
actually performing a division or square root because it presupposes that the result of
the computation is known before the algorithm starts.

Second, when the algorithm is applied to division or square root, the computation
of the tails Ti involves a nontrivial division. For example, with the invariant written as
∀i ∈ N : Ti = Bi(V −Hi), it is simple to derive for the division problem V ≡ X/Y
that

∀i ∈ N : TiY = Bi(X −HiY ),

7



Algorithm 2 DSM using a proxy that determines {(Bi, Hi, Ti)}∞i=0 for V ∈ R≥0
where ∀i ∈ N>0 : (DSFi ∈ RNI(Ωi))

∧
(βi ≥ 2).

procedure DSM PROXY(V, {ψi}∞i=0)
(B0, H0, T0) := (1, 0, V )
for i := 0, 1, 2, . . . do
{Invariant: V = Hi + Ti/Bi}
T pi := (1 + ψi)Ti
vi+1 := DSFi+1(βi+1T

p
i )

Bi+1 := βi+1Bi
Hi+1 := Hi + vi+1/Bi+1

Ti+1 := βi+1Ti − vi+1

end for
end procedure

and for the square root problem V ≡
√
X that

∀i ∈ N : Ti(V +Hi)/2 = Bi(X −H2
i )/2.

In each of these equalities, the right-hand side can be computed via addition and mul-
tiplication of known finite precision values and the finite precision estimate Hi of V .
However, given these right-hand sides, an unavoidable nontrivial division is required
to determine the values of Ti.

Algorithm 1 determines the next digit vi+1 by approximately rounding βi+1Ti to
an integer. It is plausible, then, that vi+1 can be determined using an accurate3 proxy
T pi for Ti. Algorithm 2 is a template for a DSM that uses a proxy T pi for Ti; it reduces
to Algorithm 1 when ∀i ∈ N : ψi = 0.

We make two assumptions about the proxies {T pi }∞i=0.
• For analysis: The proxy T pi can be expressed as T pi = (1 +ψi)Ti; if Ti 6= 0 then
|ψi| is the relative error in the approximation of Ti by the proxy T pi .

• For implementation: The proxy T pi can be computed without knowledge of the
exact values of V and Ti. When this assumption is satisfied, occurrences of
V and Ti in Algorithm 2 can be eliminated. Examples of this elimination are
presented in the following sections.

In Algorithm 2, the sequences {DSFi}∞i=1 and {βi}∞i=1 are considered to be fixed
and to honor the restrictions stated in the header. We also suppose that ψi depends
on V , Ti, and Hi; the dependence on Hi can be eliminated by applying the invariant
Hi = V − Ti/Bi. In summary, Ti+1 can be determined from just V and Ti.

To reduce the notational load, the dependence of Ti and T pi on V is represented
implicitly.

Theorem 5.1. (Proxy Theorem) In Algorithm 2 suppose that for some V ∈ R≥0 the
sequence {ψi}∞i=0 satisfies ∀i ∈ N, t ∈ R : |ψi(V, t)| ≤ Ψi(V, |t|) where Ψi is a

3The accuracy of an approximation is measured by its relative error. The relative error of an approxima-
tion A′ of A 6= 0 is |ψ| where A′ = (1 + ψ)A.
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non-decreasing function of its second argument. Then for that V ,

∀i ∈ N : (|Ti| ≤ τi(V )) ∧ (|T pi | ≤ τ
p
i (V ))

where τi, τ
p
i : R≥0 → R are defined as

τ0(u) ≡ u,
∀i ∈ N : τi+1(u) ≡ βi+1Ψi(u, τi(u))τi(u) + Ωi+1, and

∀i ∈ N : τpi (u) ≡ (1 + Ψi(u, τi(u)))τi(u).

Proof. Suppose that V ∈ R≥0 and the sequence {ψi}∞i=0 satisfies ∀i ∈ N, t ∈ R :
|ψi(V, t)| ≤ Ψi(V, |t|) where Ψi is a non-decreasing function of its second argument.

We inductively prove that ∀i ∈ N : |Ti| ≤ τi(V ) as follows. The base case is true
|T0| = V = τ0(V ). For the inductive step assume that |Ti| ≤ τi(V ) for some i ∈ N.
We know T pi = (1 + ψi(V, Ti))Ti, so application of the triangle inequality yields:

|Ti+1| = |βi+1Ti − vi+1|
= |βi+1Ti − DSFi+1(βi+1T

p
i )|

= |βi+1Ti − (βi+1T
p
i − coDSFi+1(βi+1T

p
i ))|

= |βi+1(Ti − T pi ) + coDSFi+1(βi+1T
p
i )|

= |−βi+1ψi(V, Ti)Ti + coDSFi+1(βi+1T
p
i )|

≤ βi+1|ψi(V, Ti)||Ti|+ Ωi+1.

Next, apply the assumption that |ψi(V, t)| ≤ Ψi(V, |t|), where Ψi is a non-decreasing
function of its second argument, to continue this inequality as follows.

|Ti+1| ≤ βi+1|ψi(V, Ti)||Ti|+ Ωi+1

≤ βi+1Ψi(V, |Ti|)|Ti|+ Ωi+1

≤ βi+1Ψi(V, τi(V ))τi(V ) + Ωi+1 ≡ τi+1.

This completes the induction.
With the bounds on ∀i ∈ N : |Ti| ≤ τi(V ) established, the bounds on ∀i ∈ N : |T pi |

are obtained as follows. For each i ∈ N:

|T pi | = |(1 + ψi(V, Ti))Ti|
≤ (1 + |ψi(V, Ti)|)|Ti|
≤ (1 + Ψi(V, |Ti|))|Ti|
≤ (1 + Ψi(V, τi(V )))τi(V ) ≡ τpi (V ).

Definition 5.2. Let P be the subset of functions R>0 → R for which p ∈ P whenever
p(V ) is a finite sum of terms of the form cV n where c ∈ R≥0 and n ∈ Z. (P is a subset
of the posynomials in V [2, 6].)
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Each p ∈ P is a convex function because on R>0 its second derivative is non-
negative. Among the elements of P are each non-negative constant function as well
as the identity function ν where ∀u ∈ R>0 : ν(u) = u. We also have these closure
properties: for p, q ∈ P the functions p/ν, p+ q, pq ∈ P.

Corollary 5.3. Let the assumptions of Theorem 5.1 hold for every V ∈ R>0. If

∀i ∈ N, p ∈ P : Φi(p) ∈ P.

where Φi : P→ R>0 → R is defined as

∀p ∈ P, u ∈ R>0 : Φi(p)(u) = Ψi(u, p(u)).

then for any closed subinterval [a, b] of R>0,

∀i ∈ N, u ∈ [a, b]; τi(u) ≤ ti ≡ max (τi(a), τi(b)),

∀i ∈ N, u ∈ [a, b]; τpi (u) ≤ tpi ≡ max (τpi (a), τpi (b)).

Proof. Let the assumptions of this corollary hold. We first prove inductively that τi ∈ P
for each i ∈ N. The base case is true because τ0 = ν ∈ P. For the inductive step let
τi ∈ P for some i ∈ N. By assumption Φi(τi) ∈ P, so by the closure properties
τi+1 = βi+1Φi(τi)τi + Ωi+1 ∈ P, and this completes the inductive argument. Next,
consider τpi for any i ∈ N. By assumption Φi(τi) ∈ P because τi ∈ P, so by the
closure properties τpi = (1 + Φi(τi))τi ∈ P.

Let [a, b] be a closed subinterval of R>0. Because functions in P are convex, we
know that τi and τpi attain their maximum on [a, b] at either a or b. [16].

Combining the Theorem 3.2 with Corollary 5.3 yields for each i ∈ N and V ∈ [a, b]
that

|Ti| ≤ ti and |vi+1| ≤ bβi+1t
p
i + Ωi+1c.

The formalization of the Proxy Theorem using the HOL Light theorem prover is
presented in the appendix.

6 DSM for Division
As discussed in section 2, we consider the computation of V ≡ X/Y where X ∈
[1/2, 1) and Y ∈ [1, 2). Algorithm 3 is an effective DSM that computes V ; it uses an
approximation g(Y ) of 1/Y obtained from, say, a lookup table. (Microprocessors often
have an approximate reciprocal instruction.) The relative error in this approximation at
Y is |σ(Y )| where σ : [1, 2)→ R is defined so that

∀Y ∈ [1, 2) : g(Y ) ≡ (1 + σ(Y ))/Y.

We assume ∀Y ∈ [1, 2) : |σ(Y )| ≤ Σ for some constant Σ.
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Algorithm 3 DSM using a proxy for division that determines {(Bi, Hi, Ri)}∞i=0 where
X ∈ [1/2, 1), Y ∈ [1, 2), V ≡ X/Y , and ∀i ∈ N>0 : (DSFi ∈ RNI(Ωi))

∧
(βi ≥ 2).

procedure DSM DIV(X,Y )
(B0, H0, R0) := (1, 0, X)
for i := 0, 1, 2, . . . do
{Invariant: X = HiY +Ri/Bi}
T pi := g(Y )Ri
vi+1 := DSFi+1(βi+1T

p
i )

Bi+1 := βi+1Bi
Hi+1 := Hi + vi+1/Bi+1

Ri+1 := βi+1Ri − vi+1Y
end for

end procedure

Reintroduce into Algorithm 3 the recursive computation of Ti as in Algorithm 2,
and with it the invariant ∀i ∈ N : V = Hi + Ti/Bi. As described in section 5, from
this invariant we find that

∀i ∈ N : TiY = Bi(X −HiY )︸ ︷︷ ︸
R̃i

.

The R̃i are called partial remainders for division and admit, for all i ∈ N, the identity:

R̃i+1 − βi+1R̃i = Bi+1(X −Hi+1Y )− βi+1Bi(X −HiY )

= −Bi+1(Hi+1 −Hi)Y

= −vi+1Y.

We conclude that the partial remainders R̃i form one solution of the recurrence

R̃0 = X,

∀i ∈ N : R̃i+1 = βi+1R̃i − vi+1Y.

The Ri computed by Algorithm 3 form another solution of this recurrence. Because
this recurrence has a unique solution, we conclude that ∀i ∈ N : R̃i = Ri.

The approximate identity g(Y )Y ≈ 1 allows division by Y to be replaced, approx-
imately, by multiplication by g(Y ). Recall that ∀i ∈ N : TiY = Ri, so the proxy T pi
for Ti is

∀i ∈ N : T pi ≡ g(Y )Ri.

A short computation shows that

∀i ∈ N : T pi = g(Y )Ri = g(Y )Y Ti = (1 + σ(Y ))Ti,

so the Proxy Theorem 5.1 can be applied with ∀i ∈ N : ψi(V, t) ≡ σ(Y ) and ∀i ∈ N :
Ψi(V, τ) ≡ Σ because

∀i ∈ N : |ψi(V, t)| ≡ |σ(Y )| ≤ Σ ≡ Ψi(V, |t|).
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Algorithm 4 DSM using a proxy for square root that determines {(Bi, Hi, Ri)}∞i=0

where X ∈ [1/4, 1), V ≡
√
X , and ∀i ∈ N>0 : (DSFi ∈ RNI(Ωi))

∧
(βi ≥ 2).

procedure DSM SQRT(X)
(B0, H0, R0) := (1, 0, X/2)
for i := 0, 1, 2, . . . do
{Invariant: X = H2

i + 2Ri/Bi}
T pi := µig(X)Ri
vi+1 := DSFi+1(βi+1T

p
i )

Bi+1 := βi+1Bi
Hi+1 := Hi + vi+1/Bi+1

Ri+1 := βi+1Ri − vi+1(Hi+1 +Hi)/2
end for

end procedure

Clearly ∀i ∈ N, p ∈ P : Φi(p) = Σ ∈ P, so Corollary 5.3 applies. We conclude that
∀i ∈ N : |Ti| ≤ ti ≡ τi(1) and ∀i ∈ N : |T pi | ≤ tpi ≡ τpi (1) because each τi and τpi is
a non-negative increasing linear function on [1/4, 1).

7 DSM for Square Root

As discussed in section 2, we consider the computation of V ≡
√
X for X ∈ [1/4, 1).

Algorithm 4 is an effective DSM that computes V ; it uses an approximation g(X) of
1/
√
X . (Microprocessors often have an approximate reciprocal square root instruc-

tion.) The relative error in this approximation at X is |σ(X)| where σ : [1/4, 1) → R
is defined so that

∀X ∈ [1/4, 1) : g(X) ≡ (1 + σ(X))/
√
X.

We assume ∀X ∈ [1/4, 1) : |σ(X)| ≤ Σ for some constant Σ.
Reintroduce into Algorithm 4 the recursive computation of Ti as in Algorithm 2,

and with it the invariant ∀i ∈ N : V = Hi + Ti/Bi. As described in section 5, from
this invariant we find that

∀i ∈ N : Ti(V +Hi)/2 = Bi(X −H2
i )/2︸ ︷︷ ︸

R̃i

.

The R̃i are called partial remainders for square root and admit, for all i ∈ N, the
identity:

R̃i+1 − βi+1R̃i = Bi+1

X −H2
i+1

2
− βi+1Bi

X −H2
i

2

= −Bi+1(Hi+1 −Hi)
Hi+1 +Hi

2

= −vi+1
Hi+1 +Hi

2
.

12



We conclude that the partial remainders R̃i form one solution of the recurrence

R̃0 = X/2,

∀i ∈ N : R̃i+1 = βi+1R̃i − vi+1(Hi+1 +Hi)/2.

The Ri computed by Algorithm 4 form another solution of this recurrence. Because
this recurrence has a unique solution, we conclude that ∀i ∈ N : R̃i = Ri.

The proxy T pi for Ti is obtained by dividingRi by an approximation of (V +Hi)/2.
We argue that the approximate identity ∀i ∈ N : µig(X)(V +Hi)/2 ≈ 1 holds where

µi ≡ (if i = 0 then 2 else 1)

because g(X)V ≈ 1, H0 = 0, and we expect ∀i ∈ N>0 : Hi ≈ V . This approximate
identity allows division by (V +Hi)/2 to be replaced with multiplication by µig(X),
so the proxy T pi for Ti is

∀i ∈ N : T pi ≡ µig(X)Ri.

(The invariant tells us that Ti = 2BiV when (V +Hi)/2 = 0.)
Let X ∈ [1/4, 1) be fixed, so V ≡

√
X ∈ [1/2, 1). For any i ∈ N we know

(V +Hi)/2 = V − Ti/(2Bi) = V (1− Ti/(2V Bi)) and g(X)V = 1 + σ(X), so

T pi ≡ µig(X)Ri

= µig(X)((V +Hi)/2)Ti

= µig(X)V (1− Ti/(2V Bi))Ti
= µi(1 + σ(X))(1− Ti/(2V Bi))Ti.

Therefore, T pi = (1 + ψi(V, Ti))Ti where

ψi(V, t) ≡ σ(X)−

{
0 if i = 0

(1 + σ(X))(t/(2V Bi)) if i > 0

because µ0(1− T0/(2V B0)) = 1, and so the Proxy Theorem 5.1 can be applied using

Ψi(V, |t|) ≡ Σ +

{
0 if i = 0

(1 + Σ)(|t|/(2V Bi)) if i > 0
.

Note that the first term Σ also occurs in Ψi for division. Clearly ∀i ∈ N, p ∈ P :
Φi(p) ∈ P, so Corollary 5.3 applies and we conclude that |Ti| ≤ ti ≡ max (τi(1/2), τi(1))
and |T pi | ≤ t

p
i ≡ max (τpi (1/2), τpi (1)).

8 Application
The results displayed in Table 1 describe the evolution of the bounds on the tails, tail
proxies, and digits for the DSM algorithms for division and square root presented in the
previous two sections. In this table the reciprocal and reciprocal root approximations
are characterized by Σ ≡ 2−9, and all digit selection functions belong to RNI(Ω) for

13



Ta
bl

e
1:

D
SM

(u
si

ng
a

pr
ox

y)
fo

rD
iv

is
io

n
an

d
Sq

ua
re

R
oo

tw
ith

Σ
=

2−
9

an
d

Ω
=

5/
8.

D
iv

is
io

n
D

ig
it

V
=

1/
4

V
=

1
i

lo
g 2

(β
i)

β
i

B
i

t i
tp i

B
ou

nd
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
0

1.
00

E
+0

0
1.

00
00

1.
00

20
0.

25
00

0.
00

20
0.

25
05

1.
00

00
0.

00
20

1.
00

20
1

7
12

8
1.

28
E

+0
2

0.
87

50
0.

87
67

12
8

0.
68

75
0.

00
20

0.
68

88
0.

87
50

0.
00

20
0.

87
67

2
7

12
8

1.
64

E
+0

4
0.

84
38

0.
84

54
11

2
0.

79
69

0.
00

20
0.

79
84

0.
84

38
0.

00
20

0.
84

54
3

7
12

8
2.

10
E

+0
6

0.
83

59
0.

83
76

10
8

0.
82

42
0.

00
20

0.
82

58
0.

83
59

0.
00

20
0.

83
76

4
7

12
8

2.
68

E
+0

8
0.

83
40

0.
83

56
10

7
0.

83
11

0.
00

20
0.

83
27

0.
83

40
0.

00
20

0.
83

56

D
iv

is
io

n
D

ig
it

V
=

1/
4

V
=

1
i

lo
g 2

(β
i)

β
i

B
i

t i
tp i

B
ou

nd
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
0

1.
00

E
+0

0
1.

00
00

1.
00

20
0.

25
00

0.
00

20
0.

25
05

1.
00

00
0.

00
20

1.
00

20
1

7
12

8
1.

28
E

+0
2

0.
87

50
0.

87
67

12
8

0.
68

75
0.

00
20

0.
68

88
0.

87
50

0.
00

20
0.

87
67

2
5

32
4.

10
E

+0
3

0.
67

97
0.

68
10

28
0.

66
80

0.
00

20
0.

66
93

0.
67

97
0.

00
20

0.
68

10
3

7
12

8
5.

24
E

+0
5

0.
79

49
0.

79
65

87
0.

79
20

0.
00

20
0.

79
35

0.
79

49
0.

00
20

0.
79

65
4

7
12

8
6.

71
E

+0
7

0.
82

37
0.

82
53

10
2

0.
82

30
0.

00
20

0.
82

46
0.

82
37

0.
00

20
0.

82
53

Sq
ua

re
R

oo
t

D
ig

it
V

=
1/

2
V

=
1

i
lo
g 2

(β
i)

β
i

B
i

t i
tp i

B
ou

nd
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
0

1.
00

E
+0

0
1.

00
00

1.
00

20
0.

50
00

0.
00

20
0.

50
10

1.
00

00
0.

00
20

1.
00

20
1

7
12

8
1.

28
E

+0
2

0.
87

50
0.

87
97

12
8

0.
75

00
0.

00
78

0.
75

59
0.

87
50

0.
00

54
0.

87
97

2
7

12
8

1.
64

E
+0

4
1.

37
61

1.
37

89
11

3
1.

37
61

0.
00

20
1.

37
89

1.
22

73
0.

00
20

1.
22

98
3

7
12

8
2.

10
E

+0
6

0.
98

38
0.

98
58

17
7

0.
98

38
0.

00
20

0.
98

58
0.

93
77

0.
00

20
0.

93
96

4
7

12
8

2.
68

E
+0

8
0.

87
10

0.
87

27
12

6
0.

87
10

0.
00

20
0.

87
27

0.
85

95
0.

00
20

0.
86

11

Sq
ua

re
R

oo
t

D
ig

it
V

=
1/

2
V

=
1

i
lo
g 2

(β
i)

β
i

B
i

t i
tp i

B
ou

nd
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
τ i

(V
)

Φ
i(
τ i

)(
V

)
τ
p i
(V

)
0

1.
00

E
+0

0
1.

00
00

1.
00

20
0.

50
00

0.
00

20
0.

50
10

1.
00

00
0.

00
20

1.
00

20
1

7
12

8
1.

28
E

+0
2

0.
87

50
0.

87
97

12
8

0.
75

00
0.

00
78

0.
75

59
0.

87
50

0.
00

54
0.

87
97

2
5

32
4.

10
E

+0
3

0.
81

28
0.

81
45

28
0.

81
28

0.
00

22
0.

81
45

0.
77

56
0.

00
20

0.
77

72
3

7
12

8
5.

24
E

+0
5

0.
84

89
0.

85
05

10
4

0.
84

89
0.

00
20

0.
85

05
0.

82
83

0.
00

20
0.

82
99

4
7

12
8

6.
71

E
+0

7
0.

83
74

0.
83

90
10

9
0.

83
74

0.
00

20
0.

83
90

0.
83

22
0.

00
20

0.
83

38

14



Ω ≡ 5/8. (The PN2 or PNQ recoders discussed in [5] provide such digit selection
functions.)

The table displays results for two choices of β-sequence:
• {β1, β2, β3, β4} ≡ {27, 27, 27, 27}, and
• {β1, β2, β3, β4} ≡ {27, 25, 27, 27}.

for each of division and square root. For each of these we obtain from Corollary 5.3,
with ν the identity function, that

τ0 ≡ ν,
∀i ∈ N : τi+1 ≡ βi+1Φi(τi)τi + Ω,

∀i ∈ N : τpi ≡ (1 + Φi(τi))τi

where for division
∀τ ∈ P : Φi(τ) ≡ Σ

while for square root

∀τ ∈ P : Φi(τ) ≡

{
Σ if i = 0

Σ + (1 + Σ)τ/(2νBi) if i > 0
.

For any given value of V , we know the value of τ0 and so we can compute Φ0(τ0)(V )
and then τp0 (V ). This pattern is repeated for i = 1, 2, 3, 4 in succession; compute
τi(V ), then Φi(τi)(V ) and τpi (V ). From Corollary 5.3 we obtain

∀i ∈ N, V ∈ [a, b]; τi(V ) ≤ ti ≡ max (τi(a), τi(b)), and
∀i ∈ N, V ∈ [a, b]; τpi (V ) ≤ tpi ≡ max (τpi (a), τpi (b))

where [a, b] ≡ [1/4, 1] for division and [a, b] ≡ [1/2, 1] for square root. Finally, for
i = 1, 2, 3, 4:

|Ti| ≤ ti, and |vi| ≤ bβitpi−1 + Ωc.

Observe that, for square root, the first β-sequence leads to an upper bound on |T2|
that is larger than 1, and so the bound on |v3| is larger than 2β3 = 27 = 128. For the
second β-sequence, obtained from the first β-sequence by decreasing β2 from 27 to 25,
we find that |vi| < 2βi for 2 ≤ i ≤ 4 as well as |T4| < 1; so the simplest form of
on-the-fly accumulation of the digits can be applied. The reason why the reduction of
β2 from 27 to 25 is effective can be explained by the fact that

Φ1(τ1) = Σ + (1 + Σ)τ1/(2νβ1)

and so

τ2 = β2Σ + Ω2 + β2(1 + Σ)τ1/(2νβ1).

From the corresponding example for division we know β2Σ + Ω2 = 1/4 + 5/8 = 7/8
when β2 = 27. The third term contains the ratio β2/β1, so when β2 is reduced from 27

to 25 the contribution of this third term is reduced by a factor of 4.
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We performed additional experiments using a spreadsheet implementation of the
DSM for division and square root 4 that expand on the results presented in Table 1. For
specified values of the inputs (X and Y for division,X for square root), the spreadsheet
computed the slack si ≡ vmaxi −|vi|where vmaxi is the upper bound on |vi| as discussed
at the end of section 5. The spreadsheet’s optimizer was used to determine inputs that
made si small, i.e., made |vi| close to vmaxi . For both division and square root, and
for each i ∈ {1, 2, 3, 4}, the optimizer was able to find inputs that made |vi| at least 96
percent of vmaxi .

9 Conclusion
The analysis presented in this paper is generic in the sense that no special properties
of digit selection or reciprocal approximation are assumed. We have not considered
how the digit selection function is implemented efficiently; we refer only to the refer-
ences [4, 5, 10, 11, 15]. Nor have we discussed the effect of using one-sided approxi-
mations of the reciprocals, or biased digit selection functions.

The analysis presented here also extends to higher roots. For example, for the cube
root V = X1/3, from Ti = Bi(V −Hi) it follows that

Ti(V
2 + V Hi +H2

i )/3 = Bi(X −H3
i )/3.

The partial remainders Ri ≡ Bi(X − H3
i )/3 satisfy a two-term recurrence. Also, if

νi = (if i == 0 then 3 else 1) and g(X) ≈ X−2/3, then T pi ≡ νig(X)Ri is a natural
choice as the proxy for Ti because νig(X)(V 2 + V Hi +H2

i )/3 ≈ 1.
Prescaled division is also covered by the analysis presented here. Prescaled division

computes X ′ ≡ g(Y )X and Y ′ ≡ g(Y )Y = 1 + σ(Y ) before the for-loop; note that
X ′/Y ′ = X/Y . Inside the for-loop, the expressions

Ri+1 = βi+1Ri − vi+1Y and X = HiY +Ri/Bi

for the partial remainder and the invariant become, after multiplication by g(Y ),

R′i+1 = βi+1R
′
i − vi+1Y

′

= (βi+1R
′
i − vi+1)− vi+1σ(Y ), and

X ′ = HiY
′ +R′i/Bi

where R′i ≡ g(Y )Ri. Note that R′0 ≡ X ′ and T pi = R′i. The advantage of prescaled
division is that, at a cost of two multiplications outside the for-loop, no multiplication
inside the for-loop is needed to form the proxy T pi .

The proofs of the Proxy Theorem, its Corollary and the applications to division
and square root, including verification of some concrete error bounds for particular
instances, have been formally verified using the HOL Light theorem prover [12]; for
the details see the appendix.

4For readers interested in replicting our results: These Excel 2016 spreadsheets are included as ancil-
lary files DSM Division.xlsm and DSM SquareRoot.xlsm. The definition of the functions dsf(),
phidiv(), and phisqrt() used in these spreadsheets are contained in a VBA Module. The optimization
was performed by Excel’s Solver Add-in using its Evolutionary mode of operation.
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A HOL Light proof of theorems
In this appendix, we discuss the full HOL Light [12] proof script for the claims made
in the main body of the paper.

A.1 The main theorem 5.1
From this point on we present the actual ASCII proof script5 required for HOL Light to
prove the statements, interspersed with a few comments. Initially we load HOL Light’s
fairly extensive library of multivariate real and complex analysis. This is overkill for
the relatively small amount of background material we need, but saves us from estab-
lishing from scratch various basic properties of convex functions. (In fact, a couple of
additional properties of convex functions of general interest were added to the libraries
as a direct result of supporting this proof.)

needs "Multivariate/realanalysis.ml";;

We now proceed to the main proof scripts. Note that HOL Light proof scripts
are normally wrapped up in a prove(assertion,tactics) pair, but that the
intermediate steps can be explored interactively via commands such as g (set goal) and
e (expand current goal using tactics). For more information about the mechanics of
HOL Light interaction see the tutorial [13]. Thus, the overall block for theorem 5.1 is
an OCaml phrase binding to the desired name THEOREM_V_1 the result of proving an
assertion

let THEOREM_V_1 = prove
(‘!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)

(B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
(PSI:num->real#real->real) (psi:num->real#real->real)
(tau:num->real->real) (taup:num->real->real).

// Environmental assumptions including nondecreasing property
&0 <= V /\
(!i. i >= 0 ==> beta i > &0) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
(!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
(!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\

(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =

beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
(!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\

// Computing recursively
B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\

5This HOL Light script is included as the ancillary file dsm.ml.
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(!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1))

// Conclude loop invariant and bounds.
==> (!i. V = H i + Tl i / B i) /\

(!i. i >= 0 ==> abs(Tl i) <= tau i V) /\
(!i. i >= 0 ==> abs(Tp i) <= taup i V)‘,

using the tactic script that follows, starting with some initial breakdown of the goal
stripping off outer quantifiers and turning the antecedents of implications into assump-
tions of the goal state:

REPEAT GEN_TAC THEN REWRITE_TAC[GE; real_gt; real_gt; LE_0] THEN
STRIP_TAC THEN

We first establish by induction that all Bi are strictly positive:

SUBGOAL_THEN ‘!i:num. &0 < B i‘ ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_01; ADD1; REAL_LT_MUL];
ALL_TAC] THEN

We then reshuffle the conjuncts to handle the τp clause first, assuming the other
two clauses:

MATCH_MP_TAC(TAUT ‘(p /\ q ==> r) /\ p /\ q ==> p /\ q /\ r‘) THEN
CONJ_TAC THENL
[DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
ASM_REWRITE_TAC[REAL_ABS_MUL] THEN GEN_TAC THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN
MATCH_MP_TAC(REAL_ARITH ‘abs(x) <= a ==> abs(&1 + x) <= &1 + a‘) THEN
TRANS_TAC REAL_LE_TRANS ‘(PSI:num->real#real->real) i (V,abs(Tl i))‘ THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REAL_ABS_POS];
ALL_TAC] THEN

Now we begin the main inductive proof and dispose of the base case by simple
arithmetic:

REWRITE_TAC[AND_FORALL_THM] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN

First we establish that the step case of the loop invariant holds

CONJ_TAC THENL
[ASM_REWRITE_TAC[ADD1] THEN
SUBGOAL_THEN ‘&0 < beta (i + 1) /\ &0 < B i‘ MP_TAC THENL
[ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
ALL_TAC] THEN

after which we massage the goal a little and chain through the inequalities, roughly
following the paper proof:

FIRST_X_ASSUM(CONJUNCTS_THEN (ASSUME_TAC o GSYM)) THEN
REWRITE_TAC[ADD1] THEN

TRANS_TAC REAL_LE_TRANS
‘abs(-- beta (i + 1) * psi i (V:real,Tl i) * Tl i +

(beta (i + 1) * Tp i - DSF (i + 1) (beta (i + 1) * Tp i)))‘ THEN
CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; ALL_TAC] THEN
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TRANS_TAC REAL_LE_TRANS
‘beta (i + 1) * abs(psi i (V:real,Tl i)) * abs(Tl i) + omega(i + 1)‘ THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REAL_ARITH

‘abs(x) <= a /\ abs(y) <= b ==> abs(x + y) <= a + b‘) THEN
ASM_SIMP_TAC[ARITH_RULE ‘1 <= i + 1‘] THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG] THEN
ASM_SIMP_TAC[REAL_ARITH ‘&0 < x ==> abs x = x‘; REAL_LE_REFL];
ALL_TAC] THEN

ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LE_RADD] THEN
ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS] THEN
TRANS_TAC REAL_LE_TRANS ‘(PSI:num->real#real->real) i (V,abs(Tl i))‘ THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REAL_ABS_POS]);;

A.2 Properties of posynomials
The proof of corollary 5.3 requires a notion corresponding to a restricted subset of the
posynomials, functions of V consisting of finite sums of positive multiples of integer
powers of V ,

∑k
1 ciV

ri . We render this in HOL Light as follows (using the simple
word ‘posynomial’ is perhaps a little misleading since these are a restricted case, but
this is only a name):

let posynomial = new_definition
‘posynomial p <=>
?c (n:num->real) k.

(!i. 1 <= i /\ i <= k ==> c i > &0 /\ integer(n i)) /\
(!v. &0 < v ==> sum (1..k) (\i. c i * v rpow (n i)) = p v)‘;;

We now proceed to prove various basic ‘closure’ properties, roughly corresponding
to those mentioned in the text. The identically zero function is a posynomial; even
though the coefficients in the sum are assumed strictly positive, we can take k = 0 and
get an empty sum:

let POSYNOMIAL_0 = prove
(‘posynomial (\v. &0)‘,
REWRITE_TAC[posynomial] THEN
MAP_EVERY EXISTS_TAC [‘(\i. &1):num->real‘; ‘(\i. &0):num->real‘; ‘0‘] THEN
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

Similarly straightforwardly, the identically 1 function is also a posynomial:

let POSYNOMIAL_1 = prove
(‘posynomial (\v. &1)‘,
REWRITE_TAC[posynomial] THEN
MAP_EVERY EXISTS_TAC [‘(\i. &1):num->real‘; ‘(\i. &0):num->real‘; ‘1‘] THEN
REWRITE_TAC[INTEGER_CLOSED; SUM_SING_NUMSEG; RPOW_POW] THEN REAL_ARITH_TAC);;

and indeed if p is a posynomial, so is any positive multiple of it

let POSYNOMIAL_CMUL = prove
(‘!p c. posynomial p /\ &0 < c ==> posynomial(\v. c * p(v))‘,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[posynomial] THEN DISCH_THEN(X_CHOOSE_THEN ‘d:num->real‘
(fun th -> EXISTS_TAC ‘(\i. c * d i):num->real‘ THEN MP_TAC th)) THEN
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
SIMP_TAC[SUM_LMUL; GSYM REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[real_gt; REAL_LT_MUL]);;

19



It is in fact convenient to record that any nonnegative constant function is a posyn-
omial

let POSYNOMIAL_CONST = prove
(‘!c. &0 <= c ==> posynomial (\v. c)‘,
REWRITE_TAC[REAL_ARITH ‘&0 <= c <=> c = &0 \/ &0 < c‘] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[POSYNOMIAL_0] THEN
GEN_REWRITE_TAC (RAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC POSYNOMIAL_CMUL THEN
ASM_REWRITE_TAC[POSYNOMIAL_1]);;

We next observe that multiplying a posynomial by an integer power of the variable
again gives a posynomial:

let POSYNOMIAL_VPOWMUL = prove
(‘!p n. posynomial p /\ integer n ==> posynomial(\v. p(v) * v rpow n)‘,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[posynomial] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC ‘c:num->real‘ THEN
GEN_REWRITE_TAC BINOP_CONV [SWAP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC ‘k:num‘ THEN
DISCH_THEN(X_CHOOSE_THEN ‘nn:num->real‘ STRIP_ASSUME_TAC) THEN
EXISTS_TAC ‘(\i. nn i + n):num->real‘ THEN
ASM_SIMP_TAC[RPOW_ADD; REAL_MUL_ASSOC; SUM_RMUL; INTEGER_CLOSED]);;

This yields other basic closure properties as special cases: multiplying by V and
dividing by V :

let POSYNOMIAL_VMUL = prove
(‘!p. posynomial p ==> posynomial(\v. p(v) * v)‘,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [‘p:real->real‘; ‘&1:real‘] POSYNOMIAL_VPOWMUL) THEN
ASM_REWRITE_TAC[RPOW_POW; REAL_POW_1; INTEGER_CLOSED]);;

let POSYNOMIAL_VDIV = prove
(‘!p. posynomial p ==> posynomial(\v. p(v) / v)‘,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [‘p:real->real‘; ‘-- &1:real‘] POSYNOMIAL_VPOWMUL) THEN
ASM_SIMP_TAC[RPOW_POW; real_div; RPOW_NEG; REAL_POW_1; INTEGER_CLOSED]);;

We can also trivially derive that the identity function is a posynomial:

let POSYNOMIAL_V = prove
(‘posynomial(\v. v)‘,
GEN_REWRITE_TAC (RAND_CONV o ABS_CONV) [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC POSYNOMIAL_VMUL THEN REWRITE_TAC[POSYNOMIAL_1]);;

Slightly more involved is the fact that the sum of posynomials is a posynomial;
note that following the strict form of the definition we need to plug two summations
1 . . . n1 and 1 . . . n2 into a single summation 1 . . . n1 + n2 with some straightforward
but fiddly reindexing:

let POSYNOMIAL_ADD = prove
(‘!p q. posynomial p /\ posynomial q ==> posynomial(\v. p v + q v)‘,
REPEAT GEN_TAC THEN
REWRITE_TAC[posynomial; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [‘c1:num->real‘; ‘n1:num->real‘; ‘m:num‘] THEN
DISCH_TAC THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [‘c2:num->real‘; ‘n2:num->real‘; ‘n:num‘] THEN
DISCH_TAC THEN DISCH_TAC THEN
EXISTS_TAC ‘\i. if i <= m then (c1:num->real) i else c2 (i - m)‘ THEN
EXISTS_TAC ‘\i. if i <= m then (n1:num->real) i else n2 (i - m)‘ THEN
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EXISTS_TAC ‘m + n:num‘ THEN REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
ASM_MESON_TAC[ARITH_RULE
‘˜(i:num <= m) /\ i <= m + n ==> 1 <= i - m /\ i - m <= n‘];
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[COND_RAND] THEN
ONCE_REWRITE_TAC[MESON[] ‘(if p then f else g) (if p then x else y) =

if p then f x else g y‘] THEN
SIMP_TAC[SUM_CASES; FINITE_NUMSEG; IN_NUMSEG;
ARITH_RULE ‘(1 <= i /\ i <= m + n) /\ i <= m <=> 1 <= i /\ i <= m‘;
ARITH_RULE ‘(1 <= i /\ i <= m + n) /\ ˜(i <= m) <=>

1 + m <= i /\ i <= n + m‘] THEN
REWRITE_TAC[GSYM numseg; SUM_OFFSET; ADD_SUB] THEN ASM_SIMP_TAC[]]);;

Now by induction we can establish that a finite sum of posynomials (based on some
arbitrary indexing set k) is a posynomial:

let POSYNOMIAL_SUM = prove
(‘!k:A->bool p.

FINITE k /\ (!i. i IN k ==> posynomial(\v. p v i))
==> posynomial (\v. sum k (p v))‘,

REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[SUM_CLAUSES; POSYNOMIAL_0; POSYNOMIAL_ADD; FORALL_IN_INSERT;

ETA_AX]);;

This yields without too much trouble the fact that the product of posynomials is a
posynomial, simply by expanding the product of sums into a single sum over the Carte-
sian product of the indexing set (using HOL Light’s standard theorem SUM_SUM_PRODUCT)
and appealing to the just-proved POSYNOMIAL_SUM:

let POSYNOMIAL_MUL = prove
(‘!p q. posynomial p /\ posynomial q ==> posynomial(\v. p v * q v)‘,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV)
[CONV_RULE (RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL posynomial)] THEN
STRIP_TAC THEN ASM_SIMP_TAC[posynomial] THEN
REWRITE_TAC[GSYM posynomial] THEN
SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG; REAL_MUL_SUM] THEN
MATCH_MP_TAC POSYNOMIAL_SUM THEN
SIMP_TAC[FINITE_PRODUCT_DEPENDENT; FINITE_NUMSEG; FORALL_IN_GSPEC] THEN
REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH
‘(c * x) * (d * y):real = (c * d) * (x * y)‘] THEN
SIMP_TAC[posynomial; GSYM RPOW_ADD] THEN REWRITE_TAC[GSYM posynomial] THEN
MATCH_MP_TAC POSYNOMIAL_VPOWMUL THEN ASM_SIMP_TAC[INTEGER_CLOSED] THEN
ONCE_REWRITE_TAC[GSYM REAL_MUL_RID] THEN
RULE_ASSUM_TAC(REWRITE_RULE[real_gt]) THEN
MATCH_MP_TAC POSYNOMIAL_CMUL THEN
ASM_SIMP_TAC[REAL_LT_MUL; POSYNOMIAL_1]);;

Finally, we prove that each posynomial defines a convex function on the positive
reals. (For more on convex functions see any standard book on convexity, e.g. [1] or
[17].)

let REAL_CONVEX_ON_POSYNOMIAL = prove
(‘!p. posynomial p ==> p real_convex_on {x | x > &0}‘,
GEN_TAC THEN REWRITE_TAC[posynomial; LEFT_IMP_EXISTS_THM; real_gt] THEN
MAP_EVERY X_GEN_TAC [‘c:num->real‘; ‘n:num->real‘; ‘m:num‘] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[SET_RULE ‘&0 < v <=> v IN {x | &0 < x}‘] THEN
MATCH_MP_TAC(MESON[REAL_CONVEX_ON_EQ]
‘is_realinterval s /\ f real_convex_on s
==> (!x. x IN s ==> f x = g x) ==> g real_convex_on s‘) THEN
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REWRITE_TAC[IS_REALINTERVAL_CLAUSES] THEN
MATCH_MP_TAC REAL_CONVEX_ON_SUM THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
X_GEN_TAC ‘i:num‘ THEN STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_LMUL THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_CONVEX_ON_RPOW_INTEGER THEN
ASM SET_TAC[]);;

A.3 Corollary 5.3
We can now establish the corollary:

let COROLLARY_V_3 = prove
(‘!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)

(B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
(PSI:num->real#real->real) (psi:num->real#real->real)
(tau:num->real->real) (taup:num->real->real).

// Environmental assumptions including nondecreasing property
&0 < V /\
(!i. i >= 0 ==> beta i > &0) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
(!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
(!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\

(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =

beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
(!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\

// Computing recursively
B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\

(!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1)) /\

// The extra posynomial-related assumption
(!i p. i >= 0 /\ posynomial p

==> posynomial (\v. PSI i (v,p v)))

// Hence conclude our bounds
==> !a b. real_interval[a,b] SUBSET {x | x > &0}

==> !i u. u IN real_interval[a,b]
==> tau i u <= max (tau i a) (tau i b) /\

taup i u <= max (taup i a) (taup i b)‘,

by combining the original proxy theorem with some basic properties of posynomials.
After some initial breakdown of the goal, also standardizing inequalities by writing
s > t as t < s and so on, we make the trivial deduction 0 ≤ V from the assumption
0 < V (to settle this in the hypotheses once and for all for convenient use without
explicit mention):

REWRITE_TAC[real_gt; real_ge; GT; GE; LE_0] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN

we first prove that each τi defines a posynomial, by induction:
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SUBGOAL_THEN ‘!i:num. posynomial (tau i)‘ ASSUME_TAC THENL
[INDUCT_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
ASM_REWRITE_TAC[ADD1; POSYNOMIAL_V] THEN
MATCH_MP_TAC POSYNOMIAL_ADD THEN CONJ_TAC THENL
[MATCH_MP_TAC POSYNOMIAL_CMUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC POSYNOMIAL_MUL THEN ASM_SIMP_TAC[ETA_AX];
MATCH_MP_TAC POSYNOMIAL_CONST THEN
ASM_MESON_TAC[REAL_LE_TRANS; REAL_ABS_POS; ARITH_RULE ‘1 <= i + 1‘]];

ALL_TAC] THEN

and then, using that as a lemma, that the same is true of τpi :

SUBGOAL_THEN ‘!i:num. posynomial (taup i)‘ ASSUME_TAC THENL
[INDUCT_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN
REWRITE_TAC[ADD1] THEN ONCE_ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC POSYNOMIAL_MUL THEN REWRITE_TAC[ETA_AX] THEN
(CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM MATCH_ACCEPT_TAC]) THEN
MATCH_MP_TAC POSYNOMIAL_ADD THEN REWRITE_TAC[POSYNOMIAL_1] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[ETA_AX] THEN
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
ALL_TAC] THEN

The result then follows by appealing to a general bound property that the up-
per bound of a convex function on a real interval is attained at one of the endpoints
(REAL_CONVEX_LOWER_REAL_INTERVAL) and the fact that posynomials are con-
vex functions REAL_CONVEX_ON_POSYNOMIAL proved at the end of the previous
section:

REPEAT STRIP_TAC THEN
MATCH_MP_TAC REAL_CONVEX_LOWER_REAL_INTERVAL THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]

REAL_CONVEX_ON_SUBSET)) THEN
REWRITE_TAC[GSYM real_gt] THEN MATCH_MP_TAC REAL_CONVEX_ON_POSYNOMIAL THEN
FIRST_X_ASSUM MATCH_ACCEPT_TAC);;

Before proceeding, for convenience, we collect together a ‘kitchen sink’ version of
the main proxy theorem and corollary together:

let FULL_COROLLARY = prove
(‘!(V:real) (beta:num->real) (omega:num->real) (DSF:num->real->real)

(B:num->real) (H:num->real) (v:num->real) (Tl:num->real) (Tp:num->real)
(PSI:num->real#real->real) (psi:num->real#real->real)
(tau:num->real->real) (taup:num->real->real).

// Environmental assumptions including nondecreasing property
&0 < V /\
(!i. i >= 0 ==> beta i > &0) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
(!i. i >= 0 ==> abs (psi i (V,Tl i)) <= PSI i (V,abs(Tl i))) /\
(!i x y. &0 <= x /\ x <= y ==> PSI i (V,x) <= PSI i (V,y)) /\

(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =

beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1)) /\
(!i u. taup i u = (&1 + PSI i (u,tau i u)) * tau i u) /\

// Computing recursively
B 0 = &1 /\ H 0 = &0 /\ Tl 0 = V /\

(!i. Tp i = (&1 + psi i (V,Tl i)) * Tl i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
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(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. Tl (i + 1) = beta (i + 1) * Tl i - v (i + 1)) /\

// The extra posynomial-related assumption
(!i p. i >= 0 /\ posynomial p

==> posynomial (\v. PSI i (v,p v)))

// Hence conclude invariant and all bounds.
==> (!i. V = H i + Tl i / B i) /\

(!i. abs(Tl i) <= tau i V) /\
(!i. abs(Tp i) <= taup i V) /\
(!a b. real_interval[a,b] SUBSET {x | x > &0}

==> !i u. u IN real_interval[a,b]
==> tau i u <= max (tau i a) (tau i b) /\

taup i u <= max (taup i a) (taup i b))‘,

The proof is just a trivial if mildly tedious instantiation of earlier results; this could
have been done in one piece at the outset, but we preserved the separate results from
the earlier development:

REWRITE_TAC[real_gt; real_ge; GT; GE; LE_0] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN
ONCE_REWRITE_TAC[TAUT ‘p /\ q /\ r /\ s <=> (p /\ q /\ r) /\ s‘] THEN
CONJ_TAC THENL
[MATCH_MP_TAC(REWRITE_RULE[GE; LE_0] THEOREM_V_1) THEN
MAP_EVERY EXISTS_TAC
[‘beta:num->real‘; ‘omega:num->real‘; ‘DSF:num->real->real‘;
‘v:num->real‘; ‘PSI:num->real#real->real‘;
‘psi:num->real#real->real‘] THEN

ASM_REWRITE_TAC[real_gt];

MATCH_MP_TAC(REWRITE_RULE[real_gt] COROLLARY_V_3) THEN
MAP_EVERY EXISTS_TAC
[‘V:real‘; ‘beta:num->real‘; ‘omega:num->real‘; ‘DSF:num->real->real‘;
‘B:num->real‘; ‘H:num->real‘; ‘v:num->real‘; ‘Tl:num->real‘;
‘Tp:num->real‘;
‘PSI:num->real#real->real‘; ‘psi:num->real#real->real‘] THEN

ASM_REWRITE_TAC[GE; LE_0]]);;

A.4 Instantiation to division (Section 6)
We next proceed with the instantiation to the special cases of division:

let BOUND_THEOREM_DIV = prove
(‘!beta Sigma omega B DSF H R Tp X Y g sigma v.

(!i. i >= 0 ==> beta i > &0) /\
&1 / &2 <= X /\ X < &1 /\
&1 <= Y /\ Y < &2 /\
(!y. &1 <= y /\ y < &2

==> g y = (&1 + sigma y) / y /\ abs(sigma y) <= Sigma) /\
(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
B 0 = &1 /\ H 0 = &0 /\ R 0 = X /\
(!i. Tp i = g(Y) * R i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. R (i + 1) = beta (i + 1) * R i - v(i + 1) * Y)
==> ?tau. (!u. tau 0 u = u) /\

(!i u. tau (i + 1) u =
beta (i + 1) * Sigma * tau i u + omega (i + 1)) /\

(!i. abs(X / Y - H i)
<= max (tau i (&1 / &4)) (tau i (&1)) / B i)‘,
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We begin by establishing a few obvious facts that we want to avoid re-proving later
such as 0 < Bi, and deducing that there are indeed functions τ and T satisfying the
recursion equations in the proxy theorem:

REPEAT GEN_TAC THEN REWRITE_TAC[GE; LE_0; real_gt] THEN STRIP_TAC THEN
SUBGOAL_THEN ‘&0 <= Sigma‘ ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC ‘&1:real‘) THEN REAL_ARITH_TAC;
ALL_TAC] THEN

SUBGOAL_THEN ‘!i. &0 < (B:num->real) i‘ ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_MUL; ADD1; REAL_LT_01]; ALL_TAC] THEN
SUBGOAL_THEN ‘&0 < X /\ &0 < Y‘ STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN ‘&0 < X / Y‘ ASSUME_TAC THENL
[ASM_MESON_TAC[REAL_LT_DIV]; ALL_TAC] THEN
MAP_EVERY ABBREV_TAC
[‘PSI:num->real#real->real = \i (u,t). Sigma‘;
‘psi:num->real#real->real = \i (u,t). sigma(Y:real)‘] THEN

(X_CHOOSE_THEN ‘tau:num->real->real‘
(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o

prove_recursive_functions_exist num_RECURSION)
‘(!u:real. tau 0 u = u) /\
(!i u. tau (SUC i) u =

beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1))‘ THEN
(X_CHOOSE_THEN ‘Tl:num->real‘

(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
prove_recursive_functions_exist num_RECURSION)
‘Tl 0 :real = X / Y /\
!i. Tl (SUC i) = beta (i + 1) * Tl i - v (i + 1)‘ THEN

ABBREV_TAC
‘taup:num->real->real = \i u. (&1 + PSI i (u,tau i u)) * tau i u‘ THEN

We then simply instantiate the proxy theorem/corollary appropriately:

MP_TAC(ISPECL
[‘X / Y:real‘;
‘beta:num->real‘;
‘omega:num->real‘;
‘DSF:num->real->real‘;
‘B:num->real‘;
‘H:num->real‘;
‘v:num->real‘;
‘Tl:num->real‘;
‘Tp:num->real‘;
‘PSI:num->real#real->real‘;
‘psi:num->real#real->real‘;
‘tau:num->real->real‘;
‘taup:num->real->real‘]
FULL_COROLLARY) THEN

Now after some trivial cleanup and splitting

REWRITE_TAC[GE; LE_0; real_gt] THEN ANTS_TAC THENL

we first need to verify the various hypotheses of the proxy theorem and corollary. In
all we get 17(!) of them. However, it turns out that most have trivial one-line proofs
like FIRST_X_ASSUM MATCH_ACCEPT_TAC. The only one with a little content is
proving that !i. Tp i = (&1 + psi i (X / Y,Tl i)) * Tl i. After a
little initial rearrangement this devolves to proving !j. R j / Y = Tl j, which
is done by an easy induction (this corresponds to verifying the equivalence of R and
R̃ in the text). Now we have the conclusions from the main theorem/corollary and we
do some instantiation, in particular setting the endpoints of the interval for which the
bound is derived, and hence derive our result:
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STRIP_TAC THEN EXISTS_TAC ‘tau:num->real->real‘ THEN
ASM_REWRITE_TAC[REAL_ADD_SUB] THEN CONJ_TAC THENL
[EXPAND_TAC "PSI" THEN REWRITE_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_DIV2_EQ;

REAL_ARITH ‘&0 < b ==> abs b = b‘] THEN
X_GEN_TAC ‘i:num‘ THEN
FIRST_X_ASSUM(MP_TAC o SPECL [‘&1 / &4‘; ‘&1‘]) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN
ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPECL [‘i:num‘; ‘X / Y:real‘]) THEN
ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS]] THEN
REWRITE_TAC[REAL_ARITH
‘&1 / &4 <= X / Y /\ X / Y <= &1 <=>
&1 / &2 * inv(&2) <= X * inv Y /\ X * inv Y <= &1 * inv(&1)‘] THEN

CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THEN
TRY(MATCH_MP_TAC REAL_LE_INV2) THEN
REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC]);;

A.5 Instantiation to square root (Section 7)
This is conceptually the same as the instantiation to division, but various terms become
more involved and as a result the proof becomes a bit more complicated too.

let BOUND_THEOREM_SQRT = prove
(‘!beta Sigma omega B DSF H R Tp X g sigma v.

(!i. i >= 0 ==> beta i > &0) /\
&1 / &4 <= X /\ X < &1 /\
(!x. &1 / &4 <= x /\ x < &1

==> g x = (&1 + sigma x) / sqrt x /\
abs(sigma x) <= Sigma) /\

(!i. i >= 1 ==> (!x. abs (x - DSF i x) <= omega i)) /\
B 0 = &1 /\ H 0 = &0 /\ R 0 = X / &2 /\
(!i. Tp i = (if i = 0 then &2 else &1) * g(X) * R i) /\
(!i. v (i + 1) = DSF (i + 1) (beta (i + 1) * Tp i)) /\
(!i. B (i + 1) = beta (i + 1) * B i) /\
(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. R (i + 1) =

beta (i + 1) * R i - v(i + 1) * (H(i + 1) + H i) / &2)
==> ?tau.

(!u. tau 0 u = u) /\
(!i u. tau (i + 1) u =

beta (i + 1) *
(if i = 0 then Sigma
else Sigma + (&1 + Sigma) * tau i u / (&2 * u * B i))

* tau i u +
omega (i + 1)) /\

(!i. abs(sqrt X - H i)
<= max (tau i (&1 / &2)) (tau i (&1)) / B i)‘,

As before we start by establishing some basic lemmas and the existence of recur-
sively defined functions:

REPEAT GEN_TAC THEN REWRITE_TAC[GE; LE_0; real_gt] THEN STRIP_TAC THEN
SUBGOAL_THEN ‘&0 <= Sigma‘ ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC ‘&1 / &2‘) THEN REAL_ARITH_TAC;
ALL_TAC] THEN

SUBGOAL_THEN ‘!i. &0 < (B:num->real) i‘ ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_SIMP_TAC[REAL_LT_MUL; ADD1; REAL_LT_01]; ALL_TAC] THEN
SUBGOAL_THEN ‘&0 < X‘ ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN ‘&0 < sqrt X‘ ASSUME_TAC THENL
[ASM_MESON_TAC[SQRT_POS_LT]; ALL_TAC] THEN
MAP_EVERY ABBREV_TAC
[‘PSI:num->real#real->real = \i (u,t).
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if i = 0 then Sigma
else Sigma + (&1 + Sigma) * t / (&2 * u * B i)‘;

‘psi:num->real#real->real = \i (u,t).
if i = 0 then sigma(X)
else (&1 + sigma(X:real)) * (&1 - t / (&2 * u * B i)) - &1‘] THEN

(X_CHOOSE_THEN ‘tau:num->real->real‘
(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o

prove_recursive_functions_exist num_RECURSION)
‘(!u:real. tau 0 u = u) /\
(!i u. tau (SUC i) u =

beta (i + 1) * PSI i (u,tau i u) * tau i u + omega (i + 1))‘ THEN
(X_CHOOSE_THEN ‘Tl:num->real‘

(STRIP_ASSUME_TAC o REWRITE_RULE[ADD1]) o
prove_recursive_functions_exist num_RECURSION)
‘Tl 0 = sqrt(X) /\
!i. Tl (SUC i) = beta (i + 1) * Tl i - v (i + 1)‘ THEN

ABBREV_TAC
‘taup:num->real->real = \i u. (&1 + PSI i (u,tau i u)) * tau i u‘ THEN

and then instantiate the proxy theorem/corollary:

MP_TAC(ISPECL
[‘sqrt X‘;
‘beta:num->real‘;
‘omega:num->real‘;
‘DSF:num->real->real‘;
‘B:num->real‘;
‘H:num->real‘;
‘v:num->real‘;
‘Tl:num->real‘;
‘Tp:num->real‘;
‘PSI:num->real#real->real‘;
‘psi:num->real#real->real‘;
‘tau:num->real->real‘;
‘taup:num->real->real‘]
FULL_COROLLARY) THEN

REWRITE_TAC[GE; LE_0; real_gt] THEN ANTS_TAC THENL

The establishment of the hypotheses is now more complicated, mainly because of
the more intricate proof that R = R̃.

[REPEAT CONJ_TAC THENL
[FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC ‘i:num‘ THEN MAP_EVERY EXPAND_TAC ["PSI"; "psi"] THEN
REWRITE_TAC[] THEN ASM_CASES_TAC ‘i = 0‘ THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC(REAL_ARITH
‘abs x <= a /\ abs((&1 + x) * y) <= b
==> abs((&1 + x) * (&1 - y) - &1) <= a + b‘) THEN

ASM_SIMP_TAC[REAL_ABS_MUL] THEN
MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
ASM_SIMP_TAC[REAL_ARITH ‘abs x <= a ==> abs(&1 + x) <= &1 + a‘] THEN
REWRITE_TAC[REAL_ABS_DIV] THEN MATCH_MP_TAC REAL_EQ_IMP_LE THEN
AP_TERM_TAC THEN
MATCH_MP_TAC(REAL_ARITH ‘&0 < x ==> abs(&2 * x) = &2 * x‘) THEN
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[];
MAP_EVERY X_GEN_TAC [‘i:num‘; ‘x:real‘; ‘y:real‘] THEN STRIP_TAC THEN
EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_LE_LADD] THEN
ASM_SIMP_TAC[REAL_LE_LADD; REAL_LE_LMUL_EQ; REAL_LE_DIV2_EQ;

REAL_ARITH ‘&0 <= s ==> &0 < &1 + s‘; REAL_LT_MUL;
REAL_ARITH ‘&0 < &2 * x <=> &0 < x‘] THEN

REAL_ARITH_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
ASM_REWRITE_TAC[] THEN NO_TAC;
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EXPAND_TAC "taup" THEN REWRITE_TAC[] THEN NO_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC ‘i:num‘ THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
EXPAND_TAC "psi" THEN REWRITE_TAC[] THEN
ASM_CASES_TAC ‘i = 0‘ THEN ASM_REWRITE_TAC[] THENL
[ASM_SIMP_TAC[REAL_DIV_SQRT; REAL_LT_IMP_LE; REAL_ARITH

‘&2 * c / s * x / &2 = c * x / s‘];
ALL_TAC] THEN

REWRITE_TAC[REAL_MUL_LID; REAL_ARITH ‘&1 + x - &1 = x‘] THEN
ASM_SIMP_TAC[] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
AP_TERM_TAC THEN MATCH_MP_TAC(REAL_FIELD
‘&0 < b /\ &0 < s /\ r = (s - t / b / &2) * t
==> inv s * r = (&1 - t * inv(&2 * s * b)) * t‘) THEN

ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN ‘!j:num. Tl j / B j = sqrt X - H j‘
ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_DIV_1; ADD1] THEN
UNDISCH_TAC ‘Tl(j:num) / B j = sqrt X - H j‘ THEN
SUBGOAL_THEN ‘&0 < beta(j + 1) /\ &0 < B j‘ MP_TAC THENL
[ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];
ASM_REWRITE_TAC[REAL_ARITH ‘s - (s - h) / &2 = (s + h) / &2‘]] THEN

MATCH_MP_TAC(REAL_FIELD
‘!b. &0 < b /\ x / b = y / &2 * z / b ==> x = y / &2 * z‘) THEN

EXISTS_TAC ‘(B:num->real) i‘ THEN ASM_REWRITE_TAC[REAL_ARITH
‘(x + h) / &2 * (x - h) = (x pow 2 - h pow 2) / &2‘] THEN

ASM_SIMP_TAC[SQRT_POW_2; REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ] THEN
SPEC_TAC(‘i:num‘,‘j:num‘) THEN
MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; REWRITE_TAC[ADD1]] THEN

ONCE_REWRITE_TAC[ASSUME
‘!i. R (i + 1) =

beta (i + 1) * R i - v (i + 1) * (H (i + 1) + H i) / &2‘] THEN
X_GEN_TAC ‘j:num‘ THEN SIMP_TAC[] THEN
REWRITE_TAC[ASSUME
‘!i. H (i + 1):real = H i + v (i + 1) / B (i + 1)‘] THEN

REWRITE_TAC[ASSUME ‘!i. B (i + 1):real = beta (i + 1) * B i‘] THEN
SUBGOAL_THEN ‘&0 < beta(j + 1) /\ &0 < B j‘ MP_TAC THENL
[ASM_REWRITE_TAC[]; CONV_TAC REAL_FIELD];

FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
FIRST_X_ASSUM MATCH_ACCEPT_TAC;
MAP_EVERY X_GEN_TAC [‘i:num‘; ‘p:real->real‘] THEN DISCH_TAC THEN
EXPAND_TAC "PSI" THEN REWRITE_TAC[] THEN
ASM_CASES_TAC ‘i = 0‘ THEN ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN
MATCH_MP_TAC POSYNOMIAL_ADD THEN
ASM_SIMP_TAC[POSYNOMIAL_CONST] THEN
MATCH_MP_TAC POSYNOMIAL_MUL THEN
ASM_SIMP_TAC[POSYNOMIAL_CONST; REAL_ARITH
‘&0 <= s ==> &0 <= &1 + s‘] THEN

REWRITE_TAC[real_div; REAL_INV_MUL] THEN REWRITE_TAC[ REAL_ARITH
‘x * inv(&2) * inv y * z = (inv(&2) * z) * x / y‘] THEN

MATCH_MP_TAC POSYNOMIAL_CMUL THEN
ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_ARITH
‘&0 < inv(&2) * x <=> &0 < x‘] THEN

MATCH_MP_TAC POSYNOMIAL_VDIV THEN ASM_REWRITE_TAC[]];

The use of the result is very similar, however, and this quickly concludes the proof:

STRIP_TAC THEN EXISTS_TAC ‘tau:num->real->real‘ THEN
ASM_REWRITE_TAC[REAL_ADD_SUB] THEN CONJ_TAC THENL
[EXPAND_TAC "PSI" THEN REWRITE_TAC[]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_DIV2_EQ;

REAL_ARITH ‘&0 < b ==> abs b = b‘] THEN
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X_GEN_TAC ‘i:num‘ THEN
FIRST_X_ASSUM(MP_TAC o SPECL [‘&1 / &2‘; ‘&1‘]) THEN
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN
ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPECL [‘i:num‘; ‘sqrt X‘]) THEN
ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS]] THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_RSQRT; MATCH_MP_TAC REAL_LE_LSQRT] THEN
ASM_REAL_ARITH_TAC]);;

A.6 Automated instantiation (related to Table 1)
For convenience, we have implemented a HOL Light derived rule to instantiate the
parameters of the theorems for division and square root and derive appropriately ac-
curate error bounds for the successive approximations. A HOL Light derived rule is
essentially a programmatic combination of more basic rules of inference, which is still
doing full logical proof behind the scenes. Thus we can consider this as analogous to a
spreadsheet producing results automatically as parameters are varied, but with the ad-
ditional security of proving the result. We will not discuss the coding in detail, but it is
very standard for such applications and can be understood by manually tracing through
specific examples.

let BOUNDS_INSTATIATION =
let pth = prove

(‘x <= a / b ==> &0 <= b ==> !a’. a <= a’ ==> x <= a’ / b‘,
REPEAT STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS ‘a / b:real‘ THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_div] THEN
MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ]) in

let rec calc rews (thb,ths) n =
if n = 0 then [thb] else
let oths = calc rews (thb,ths) (n - 1) in
let th1 = CONV_RULE NUM_REDUCE_CONV (SPEC(mk_small_numeral(n - 1)) ths) in
let th2 = GEN_REWRITE_RULE TOP_DEPTH_CONV (hd oths::rews) th1 in
let th3 = CONV_RULE REAL_RAT_REDUCE_CONV th2 in
th3::oths in

fun th beta sigma omega n d ->
let ith = BETA_RULE (SPECL [beta; sigma; omega] th) in
let avs,itm = strip_forall(concl ith) in
let hth = ASSUME (rand(lhand itm)) in
let eth = MP (SPECL avs ith) (CONJ (REAL_ARITH(lhand(lhand itm))) hth) in
let ev,ebod = dest_exists(concl eth) in
let [th0;th1;bth] = CONJUNCTS(ASSUME ebod) in
let (th_b,th_s) =
let hths = CONJUNCTS hth in
el (if th = BOUND_THEOREM_DIV then 6 else 4) hths,
el (if th = BOUND_THEOREM_DIV then 11 else 9) hths in

let bths = calc [] (th_b,th_s) n in
let tths_lo =
calc bths (SPEC (if th = BOUND_THEOREM_DIV then ‘&1 / &4‘ else ‘&1 / &2‘)

th0,
SPEC (if th = BOUND_THEOREM_DIV then ‘&1 / &4‘ else ‘&1 / &2‘)

(GEN_REWRITE_RULE I [SWAP_FORALL_THM] th1)) n
and tths_hi =
calc bths (SPEC ‘&1:real‘ th0,

SPEC ‘&1:real‘ (GEN_REWRITE_RULE I [SWAP_FORALL_THM] th1)) n in
let aths = map
(CONV_RULE REAL_RAT_REDUCE_CONV o
REWRITE_RULE(tths_lo@tths_hi) o
C SPEC bth o mk_small_numeral) (0--n) in

let weaken th =
let th1 = MATCH_MP pth th in
let th2 = GEN_REWRITE_CONV RAND_CONV bths (lhand(concl th1)) in
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let th3 = CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th2 in
let th4 = MP th1 (EQT_ELIM th3) in
let rr = rat_of_term(lhand(lhand(snd(dest_forall(concl th4))))) in
let yy = pow10 d in
let xx = ceiling_num(yy */ rr) in
let th5 = SPECL [mk_numeral xx; mk_numeral yy] DECIMAL in
let th6 = SPEC (lhand(concl th5)) th4 in
MP th6 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th6)))) in

let ath = end_itlist CONJ (map weaken aths) in
GENL avs (DISCH_ALL (CHOOSE(ev,eth) ath));;

The toplevel function takes a number of parameters

• th is the bounds theorem to instantiate, which will be BOUND_THEOREM_DIV
or BOUND_THEOREM_SQRT.

• beta, sigma and omega are HOL term instantiations for the particular values
of β, Σ and Ω.

• n is the number of iterations for which bounds are desired: an input of n will
result in bounds for H0, H1, . . . ,Hn.

• d is the number of fractional digits in the decimal representation of the digit
bounds.

For example the instantiation:

BOUNDS_INSTATIATION BOUND_THEOREM_SQRT
‘(\i. if i = 2 then &32 else if i = 5 then &64 else &128):num->real‘
‘inv(&2 pow 8):real‘
‘(\i. if i = 0 then &1 / &2 else &9 / &16):num->real‘
7 6;;

results automatically in the following theorem giving bounds to 6 places after the dec-
imal point for the iterations H0, . . . ,H7 for the square root algorithm with (somewhat
arbitrary) parameters:

|- !B DSF H R Tp X g sigma v.
&1 / &4 <= X /\
X < &1 /\
(!x. &1 / &4 <= x /\ x < &1

==> g x = (&1 + sigma x) / sqrt x /\
abs (sigma x) <= inv (&2 pow 8)) /\

(!i. i >= 1
==> (!x. abs (x - DSF i x) <=

(if i = 0 then &1 / &2 else &9 / &16))) /\
B 0 = &1 /\
H 0 = &0 /\
R 0 = X / &2 /\
(!i. Tp i = (if i = 0 then &2 else &1) * g X * R i) /\
(!i. v (i + 1) =

DSF (i + 1)
((if i + 1 = 2 then &32 else if i + 1 = 5 then &64 else &128) *
Tp i)) /\

(!i. B (i + 1) =
(if i + 1 = 2 then &32 else if i + 1 = 5 then &64 else &128) *
B i) /\

(!i. H (i + 1) = H i + v (i + 1) / B (i + 1)) /\
(!i. R (i + 1) =

(if i + 1 = 2 then &32 else if i + 1 = 5 then &64 else &128) *
R i -
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v (i + 1) * (H (i + 1) + H i) / &2)
==> abs (sqrt X - H 0) <= #1.000000 / B 0 /\

abs (sqrt X - H 1) <= #1.062500 / B 1 /\
abs (sqrt X - H 2) <= #0.836978 / B 2 /\
abs (sqrt X - H 3) <= #0.998973 / B 3 /\
abs (sqrt X - H 4) <= #1.062231 / B 4 /\
abs (sqrt X - H 5) <= #0.828059 / B 5 /\
abs (sqrt X - H 6) <= #0.976530 / B 6 /\
abs (sqrt X - H 7) <= #1.050765 / B 7

Using similar simple invocations we can exactly check the main bounds given in
Table 1. Where they differ in the last digit, the difference arises because our theorems
are returning actual bounds whereas the table just rounds the bounds to nearest.
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